2017 Global Innovation 1000

Will Stronger Borders Weaken Innovation?
Introduction

Will Stronger Borders Weaken Innovation?

Innovation 1000 update
For the 13th year, Strategy& studied innovation trends and spending at the world’s 1000 largest publicly listed corporate R&D spenders.
The study has become a recognized contributor in better understanding what drives success in R&D and innovation

- The Global Innovation 1000 study has received significant media and academic attention:

 - Called “the most comprehensive assessment of the relationship between R&D investment and corporate performance” by the *The Economist* in 2009

 - Given “2006 Special Achievement Award for Advancing Innovation” by Innovate Forum

 - Awarded Best of Visions award from the PDMA in 2009

 - In 2011 and 2014, awarded Silver & Gold Medals, respectively, for original research by the American Society of Business Press Editors (“the Azbee”)

 - Cited in more than 240 publications spanning 34 countries on 6 continents
Introduction

Will Stronger Borders Weaken Innovation?

Innovation 1000 update
Executive Summary – Will Stronger Borders Weaken Innovation?

• Companies are concerned about the effects of economic nationalism and some are already seeing the effects on their businesses
• The US, China, and the UK are viewed as having the greatest movement to economic nationalism and are the same countries whose R&D programs are most at risk. Canada, Germany, and France will most likely gain from broad economic nationalism in R&D
 – US’s talent flow is most at risk for disruption if policy in granting student and work visas becomes restrictive. Immigrants in the US hold a large share of jobs in the high-tech, science and engineering sectors as well as making up a large share of enrollment in engineering programs
 – UK’s talent flow is also at risk in the same way the US’s is. Weaker R&D programs in the UK could also have a ripple effect across the region
 – China’s corporate R&D spending had experienced double-digit growth rates for many years, but in 2017 the country saw a 3.3% decline in corporate R&D spending for the first time. 81% of China’s R&D spend in 2015 was performed by companies headquartered in other countries. The combination of these trends for China makes the country vulnerable to potential disruptions of R&D investment coming from abroad
• A little over one half of companies expect a moderate to significant impact to their R&D and innovation efforts and almost half of the companies in North America and the rest of the world plan to make changes to their R&D programs over the next two years
• High performers are more likely to anticipate changes, and they are also more likely to take action. Middling and under performers were the most doubtful that economic nationalism would require changes in their R&D efforts. Interestingly, under performers were most likely to take action that could be harmful to their overall R&D efforts
• Economic nationalism would result in the replacement of today’s integrated and interdependent network with more self-sufficient, fully-functioning R&D nodes. Companies will need to look for ways to manage the higher costs they will incur with this model
Executive Summary – Update on Top 1000 companies

- In 2017 total **R&D spending** by the Global Innovation 1000 **increased 3.2% to $701.6B, exceeding $700B for the first time**
- R&D intensity spiked to its all-time study high of **4.5%**, with revenue for the 1000 companies falling by 2.5% - driven by the 14.5% decline in Chemicals & Energy revenue
- **Software and internet industry continues to experience high year-over-year growth**, up 16.1% this year while Healthcare, the second fastest growth industry for R&D spending grew 5.9%
- **Healthcare companies are on track to become the biggest R&D spenders** by 2018
- **Computing and electronics, Healthcare, and Auto** contributed **61.3% of R&D spending in 2017**, almost the same as in 2016
- Regionally, **Japanese firms grew R&D spend for the first time in 5 years**, US continued its upward growth and China, who enjoyed years of double-digit R&D growth, saw a 3.3% decline in R&D spending for the first time in the study*
- **Amazon moved from number 3 in 2016 to become the largest R&D spender in 2017.** It is one of nine high-tech companies on the top 20 list, and one of 13 companies headquartered in the United States
- For the first time, **Alphabet surpassed Apple as the Most Innovative company** and **Alibaba joins the ranking** for the first time
- Companies selected by survey respondents as **the most innovative companies continue to outperform** the top 20 R&D spenders

Use of local currency would result in different YoY changes
Survey participants believe the US, China & the UK are most likely to adopt economic nationalism-related policies that will affect R&D

Countries with greatest expectation of movement towards economic nationalism-related policies that would affect R&D activities

United States: 63%
China: 44%
United Kingdom: 34%
India: 15%
Germany: 10%
Russia: 8%
France: 8%
Canada: 5%
Brazil: 4%
Turkey: 4%

Q21. Which three countries do you expect to have the greatest movement toward more economic nationalism–related policies that would affect corporate R&D activities?
N=562, N= total number of survey respondents
*China includes Hong Kong for all China data points
US, UK & China are most at risk, while Canada, Germany & France will most likely gain from broad economic nationalism

The Net Risk Index

<table>
<thead>
<tr>
<th>Risk/Gain Index:</th>
<th>US</th>
<th>UK</th>
<th>China</th>
<th>Mexico</th>
<th>India</th>
<th>Japan</th>
<th>Russia</th>
<th>Singapore</th>
<th>South Korea</th>
<th>Brazil</th>
<th>Aus.</th>
<th>France</th>
<th>Germany</th>
<th>Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imported corporate R&D (2015) in US billions:</td>
<td>-31.7</td>
<td>-20.8</td>
<td>-17.4</td>
<td>-5.0</td>
<td>-3.2</td>
<td>-2.3</td>
<td>-1.4</td>
<td>-1.3</td>
<td>-1.3</td>
<td>-0.5</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.7</td>
</tr>
<tr>
<td>Gain/Bar width = total corporate R&D imported into country $US billions</td>
<td>$52.5</td>
<td>$19.5</td>
<td>$44.2</td>
<td>$1.5</td>
<td>$28.1</td>
<td>$16.0</td>
<td>$5.9</td>
<td>$7.1</td>
<td>$5.7</td>
<td>$5.1</td>
<td>$3.9</td>
<td>$7.9</td>
<td>$15.9</td>
<td>$9.8</td>
</tr>
<tr>
<td>Risk/Bar height = country’s net risk/gain if economic nationalism affects R&D efforts</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
</tr>
</tbody>
</table>

Key

Imported corporate R&D as a % of in-country corporate R&D spending (2015)

- 0-20%
- 21-40%
- 41-60%
- 61-80%
- 81-100%

Q22. Which three countries do you believe will be the most put at economic risk if more economic nationalism-related policies affecting R&D efforts are widely adopted?
Q22a Which three countries do you believe will be the most helped economically if more economic nationalism-related policies affecting R&D efforts are widely adopted?
N=562
Source: 2017 and 2015 Global Innovation 1000 study
Economic nationalism risk disrupting talent flows to US & UK, while China is vulnerable to interruption of external R&D fund flows

Top 3 countries at risk

<table>
<thead>
<tr>
<th>Country</th>
<th>Risk Factors</th>
</tr>
</thead>
</table>
| United States | • The US’s talent flow is potentially at risk if there is a move towards restrictive policy in granting student and work visas
• Immigrants in the US hold a large share of jobs in high-tech, science, and engineering sectors
• Enrollment in US engineering programs are predominantly made up of immigrants (81% electronical engineering and 79% computer science)* |
| United Kingdom| • The UK’s talent flow is also vulnerable if there are barriers to recruiting engineers from other EU countries
• Britain is already experiencing an existing shortage of skilled workers
• Weaker R&D programs in the UK could have a ripple effect across the region |
| China | • Corporate R&D spending in China experienced double digit growth rates for many years, but in 2017 the country saw a 3.3% decline in R&D spending for the first time in the study
• 80% of R&D spending in China in 2015 was done by companies headquartered in other countries (mainly from the US)
• These trends for China makes the country vulnerable to potential disruptions of R&D investment coming from abroad |

Top 3 countries to gain

<table>
<thead>
<tr>
<th>Country</th>
<th>Gain Factors</th>
</tr>
</thead>
</table>
| Canada | • Canada is looking to attract international innovation talent to its university system as the US tightens visa and immigration programs
• Is an attractive alternative for multinationals like Microsoft who opened a new R&D center in downtown Vancouver in 2016 with 750 R&D positions |
| Germany | • Germany has repeatedly reiterated its pro-globalization policy stance
• The country was ranked as the second country that is most likely to gain from a move towards economic nationalism by survey respondents |
| France | • Newly elected president Emmanuel Macron ran on a platform stressing the importance of innovation for the French economy
• France was ranked as the third country mostly likely to gain from broad economic nationalism by survey respondents |

Source: 2017 Global Innovation 1000 study, National Foundation for American Policy
Executives may not be considering R&D flows in assessing who is most at risk from economic nationalism-related policies

Economic nationalism-related policy risk score vs. corporate R&D import ratio

Corporate R&D imported as a % of all corporate R&D performed in country (2015)

Which three countries do you believe will be the most put at economic risk if more economic nationalism-related policies affecting R&D efforts are widely adopted? (2017) ¹)

![Diagram showing corporate R&D import ratio and economic nationalism-related policy risk score for different countries.]

Source: 2015 and 2017 Global Innovation 1000 Studies
¹) N=562
North American companies are most likely to take action in response to economic nationalism in the next two years

When companies are likely to changes its R&D efforts if there is a move towards economic nationalism

Q18. What changes would your company likely consider making to its R&D/innovation efforts if there is a move toward greater economic nationalism? And when?
N=379 (China region and Respondents with "No opinion" are not included)
Note: Due to rounding, not all columns will add up to 100%
One-fourth of companies have already experienced some pressure to change how or where they conduct innovation

Q17. Has your company experienced pressure to change any element of its approach to innovation/R&D work as a result of economic nationalism in Your company’s headquarters: and Any other country?
N=562

- Yes, pressure to change where and how we conduct innovation work: 25%
- No: 54%
- Don’t know: 21%
Japanese and North American companies are already experiencing hiring challenges as a result of economic nationalism...

Effects of economic nationalism on visas/work initiatives on R&D employees (by region)

Q20. As a consequence of economic nationalism, has your company experienced any new or greater visa restrictions or work limitations on R&D employees?
N=557 (China region is not considered)
Uncertainty in economic policy may be the cause of the unprecedented drop in alignment of business & innovation strategies

Q10. How closely aligned is your company’s innovation strategy (or approach to innovation) with its overall business strategy? N=562
High performer companies are more likely to anticipate changes, and they are also more likely to take action in response.

Likelihood of making a change in R&D/Innovation efforts if there is a move towards greater economic nationalism by perception of revenue growth:

<table>
<thead>
<tr>
<th>Change in R&D/Innovation Efforts</th>
<th>High Performers</th>
<th>Middling Performers</th>
<th>Low Performers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open future R&D center locations in regional markets</td>
<td>41%</td>
<td>31%</td>
<td>25%</td>
</tr>
<tr>
<td>Hire specialized technical talent in local markets</td>
<td>39%</td>
<td>36%</td>
<td>34%</td>
</tr>
<tr>
<td>Move to a more autonomous regional divisional model</td>
<td>18%</td>
<td>14%</td>
<td>12%</td>
</tr>
<tr>
<td>Move R&D locations away from current manufacturing / production centers</td>
<td>11%</td>
<td>9%</td>
<td>15%</td>
</tr>
<tr>
<td>Reduce staff and replace with automation</td>
<td>18%</td>
<td>15%</td>
<td>25%</td>
</tr>
</tbody>
</table>

I do not believe there will be any changes as a result of economic nationalism.

Q18. What changes would your company likely consider making to its R&D/innovation efforts if there is a move toward greater economic nationalism? And when?
Q11. How do you believe your company is performing relative to its key competitors?
N=562
As a result of economic nationalism, companies are going to be more digitally collaborative and protective of proprietary intelligence

Effects of economic nationalism on aspects of your innovation program

Q19. How do you expect the following aspects of your innovation program to change with increased economic nationalism?
N=562, For “Protection of proprietary intelligence”, N=412 (As the question was not asked in Japanese survey)
Broad economic nationalism would undermine today’s global interdependent network model, creating more self-sufficient nodes

Integrated and interdependent network

- The global innovation model involves the free flow of information, money, and talent across borders
- Today’s global innovation model would need to evolve if there is a move towards economic nationalism
- In the 2015 Global Innovation 1000 study, we found that more and more companies look for talent outside their headquarters country and set up R&D centers close to their target markets
- Distributed elements of the global innovation model are connected by a central R&D organization while maintaining a fluid network

Self-sufficient, fully-functioning R&D nodes

- Today’s global innovation model would need to evolve to a set of more self-sufficient R&D nodes
- Companies will need to look for ways to manage the higher costs they will incur with this model
- Leaders will need develop contingency plans:
 - Realignment of business and innovation strategies
 - Determine how a more autonomous and redundant R&D network would operate
 - How to prepare R&D centers to be more self-sufficient – deeper local talent
 - Ensure access to the digital tools required to ensure communication and efficiency
Introduction

Will Stronger Borders Weaken Innovation?

Innovation 1000 update
Innovation 1000’s R&D spend exceeded $700B for 1st time in 2017

Global Innovation 1000 R&D Spending

Source: Bloomberg data, Capital IQ data, 2017 Global Innovation 1000 Study
Total revenue of the Innovation 1000 fell by 2.5% in 2017

Global Innovation 1000 Revenue

12–year CAGR = 4.3%

Source: Bloomberg data, Capital IQ data, 2017 Global Innovation 1000 Study
This was primarily due to falling revenue from lower oil prices in the Chemicals and Energy industry
R&D intensity hit an all-time study high of 4.5%

Global Innovation 1000 R&D Intensity
2005–2017

Source: Bloomberg data, Capital IQ data, 2017 Global Innovation 1000 Study
Software & Internet continues to display the fastest growth in R&D spending of any industry at over 16%

Change in R&D Spending by Industry
2016–2017

Source: Bloomberg data, Capital IQ data, 2017 Global Innovation 1000 Study
By 2018, Healthcare will surpass Computing & Electronics to become highest R&D spending industry

R&D Spending by Industry, estimates
$US, Billion

* CAGR Value is calculated for last 5 years span from 2012 to 2017

Source: Bloomberg data, Capital IQ data, 2017 Global Innovation 1000 Study

Strategy& | PwC
Computing & Electronics, Healthcare, and Auto contributed 61.3% of R&D spending in 2017, almost the same as in 2016

2017 R&D Spending by Industry
Total = $701.6 US Billions

- Computing and Electronics: 23.1%
- Healthcare: 22.7%
- Auto: 15.5%
- Software and Internet: 14.5%
- Industrials: 10.2%
- Aerospace and Defense: 5.0%
- Chemicals and Energy: 3.2%
- Telecom: 2.9%
- Other: 1.6%

Source: Bloomberg data, Capital IQ data, 2017 Global Innovation 1000 Study
Japanese firms demonstrated first increase in spending in years, while Chinese firms had the first recorded decline

R&D Spending by Region

Notes: 1) Whenever China is called out in region data it always includes Hong Kong 2) Use of local currency would result in different YoY changes
Source: Bloomberg data, Capital IQ data, 2017 Global Innovation 1000 Study
Europe and Japan increased the number of companies in the Top 1000 – for Japan, this is the first time in five years while China saw a decrease in number of companies for the first time.

Number of Companies in the Top 1000 by Region
2005–2017

Source: Bloomberg data, Capital IQ data, 2017 Global Innovation 1000 Study
This is the first time the top spender is a high tech firm; Honda and Facebook join the Top 20 Spender ranking

Top 20 R&D Spenders

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>+2</td>
<td>Amazon.com, Inc.</td>
<td>North America</td>
<td>Software and Internet</td>
<td>16.1</td>
<td>136.0</td>
<td>11.8%</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>+2</td>
<td>Alphabet Inc.</td>
<td>North America</td>
<td>Software and Internet</td>
<td>13.9</td>
<td>90.3</td>
<td>15.5%</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>+2</td>
<td>Intel Corporation</td>
<td>North America</td>
<td>Computing and Electronics</td>
<td>12.7</td>
<td>59.4</td>
<td>21.5%</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>-2</td>
<td>Samsung Electronics Co., Ltd.</td>
<td>South Korea</td>
<td>Computing and Electronics</td>
<td>12.7</td>
<td>167.7</td>
<td>7.6%</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>-4</td>
<td>Volkswagen AG</td>
<td>Europe</td>
<td>Auto</td>
<td>12.1</td>
<td>229.4</td>
<td>5.3%</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>NA</td>
<td>Microsoft Corporation</td>
<td>North America</td>
<td>Software and Internet</td>
<td>12.0</td>
<td>85.3</td>
<td>14.1%</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>NA</td>
<td>Roche Holding AG</td>
<td>Europe</td>
<td>Healthcare</td>
<td>11.4</td>
<td>51.8</td>
<td>21.9%</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>+6</td>
<td>Merck & Co., Inc.</td>
<td>North America</td>
<td>Healthcare</td>
<td>10.1</td>
<td>39.8</td>
<td>25.4%</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>+2</td>
<td>Apple Inc.</td>
<td>North America</td>
<td>Computing and Electronics</td>
<td>10.0</td>
<td>215.6</td>
<td>4.7%</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>-2</td>
<td>Novartis AG</td>
<td>Europe</td>
<td>Healthcare</td>
<td>9.6</td>
<td>49.4</td>
<td>19.4%</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>-1</td>
<td>Toyota Motor Corporation</td>
<td>Japan</td>
<td>Auto</td>
<td>9.3</td>
<td>247.5</td>
<td>3.8%</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>-3</td>
<td>Johnson & Johnson</td>
<td>North America</td>
<td>Healthcare</td>
<td>9.1</td>
<td>71.9</td>
<td>12.7%</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>NA</td>
<td>General Motors Company</td>
<td>North America</td>
<td>Auto</td>
<td>8.1</td>
<td>166.4</td>
<td>4.9%</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>-2</td>
<td>Pfizer Inc.</td>
<td>North America</td>
<td>Healthcare</td>
<td>7.9</td>
<td>52.8</td>
<td>14.9%</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>NA</td>
<td>Ford Motor Company</td>
<td>North America</td>
<td>Auto</td>
<td>7.3</td>
<td>151.8</td>
<td>4.8%</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>NA</td>
<td>Daimler AG</td>
<td>Europe</td>
<td>Auto</td>
<td>6.9</td>
<td>161.8</td>
<td>4.2%</td>
</tr>
<tr>
<td>17</td>
<td>20</td>
<td>+3</td>
<td>Oracle Corporation</td>
<td>North America</td>
<td>Software and Internet</td>
<td>6.8</td>
<td>37.7</td>
<td>18.1%</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>-1</td>
<td>Cisco Systems, Inc.</td>
<td>North America</td>
<td>Computing and Electronics</td>
<td>6.3</td>
<td>49.2</td>
<td>12.8%</td>
</tr>
<tr>
<td>19</td>
<td>23</td>
<td>+4</td>
<td>Honda Motor Co., Ltd.</td>
<td>Japan</td>
<td>Auto</td>
<td>6.2</td>
<td>125.6</td>
<td>4.9%</td>
</tr>
<tr>
<td>20</td>
<td>27</td>
<td>+7</td>
<td>Facebook, Inc.</td>
<td>North America</td>
<td>Software and Internet</td>
<td>5.9</td>
<td>27.6</td>
<td>21.4%</td>
</tr>
</tbody>
</table>

Companies in red have been among the top 20 R&D spenders every year since 2005

Source: Bloomberg data, Capital IQ data, 2017 Global Innovation 1000 study
For the first time, Alphabet surpasses Apple as the Most Innovative Company; Alibaba is first Chinese firm to join Top 10 list

10 Most Innovative Companies

Source: Strategy& 2017 Global Innovation 1000 analysis
Q23. In your opinion, what are the three most innovative companies in the world? Please choose from the drop-down menu or choose “Other” to write in your recommendation. N=562
*In 2015, Google announced a corporate restructuring forming an umbrella company called Alphabet
Once again, the 10 Most Innovative Companies outperform the Top 10 R&D Spenders on financial metrics

10 Most Innovative Companies vs. Top 10 R&D Spenders*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alphabet Inc.</td>
<td>13.9</td>
<td>15.5%</td>
<td>Amazon.com, Inc.</td>
<td>16.1</td>
<td>11.8%</td>
</tr>
<tr>
<td>2</td>
<td>Apple Inc.</td>
<td>10.0</td>
<td>4.7%</td>
<td>Alphabet Inc.</td>
<td>13.9</td>
<td>15.5%</td>
</tr>
<tr>
<td>3</td>
<td>Amazon.com, Inc.</td>
<td>16.1</td>
<td>11.8%</td>
<td>Intel Corporation</td>
<td>12.7</td>
<td>21.5%</td>
</tr>
<tr>
<td>4</td>
<td>Tesla, Inc.</td>
<td>0.8</td>
<td>11.9%</td>
<td>Samsung Electronics Co., Ltd.</td>
<td>12.7</td>
<td>7.6%</td>
</tr>
<tr>
<td>5</td>
<td>Microsoft Corporation</td>
<td>12.0</td>
<td>14.1%</td>
<td>Volkswagen Aktiengesellschaft</td>
<td>12.1</td>
<td>5.3%</td>
</tr>
<tr>
<td>6</td>
<td>Samsung Electronics Co., Ltd.</td>
<td>12.7</td>
<td>7.6%</td>
<td>Microsoft Corporation</td>
<td>12.0</td>
<td>14.1%</td>
</tr>
<tr>
<td>7</td>
<td>General Electric Company</td>
<td>4.8</td>
<td>4.0%</td>
<td>Roche Holding AG</td>
<td>11.4</td>
<td>21.9%</td>
</tr>
<tr>
<td>8</td>
<td>International Business Machines Corporation</td>
<td>5.8</td>
<td>7.2%</td>
<td>Merck & Co., Inc.</td>
<td>10.1</td>
<td>25.4%</td>
</tr>
<tr>
<td>9</td>
<td>Facebook, Inc.</td>
<td>5.9</td>
<td>21.4%</td>
<td>Apple Inc.</td>
<td>10.0</td>
<td>4.7%</td>
</tr>
<tr>
<td>10</td>
<td>Alibaba Group Holding Limited</td>
<td>2.5</td>
<td>10.8%</td>
<td>Novartis AG</td>
<td>9.6</td>
<td>19.4%</td>
</tr>
</tbody>
</table>

Highest Possible Score: 100%
Normalized Performance of Industry Peers: 48%
Lowest Possible Score: 0%

Source: Bloomberg data, Capital IQ data, 2017 Global Innovation 1000 Study

* Facebook and Alibaba do not have market cap data spanning back 5 years
For the complete study and more information on the annual Strategy& Global Innovation 1000 study

Please visit:
http://www.strategyand.pwc.com/innovation1000

For media or other inquiries, please contact:

Rowena Mearley
+1 (646) 313 - 0937
rowena.j.mearley@pwc.com