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About the Fourth Industrial Revolution for the
Earth inttiative

The World Economic Forum is collaborating with PwC (as
official project adviser) and the Stanford Woods Institute
for the Environment on a major global initiative on the
Environment and the Fourth Industrial Revolution.
Working closely with leading issue experts and industry
innovators convened through the World Economic Forum’s
Global Future Council on the Environment and Natural
Resource Security — and with support from the MAVA
Foundation — this initiative leverages the platforms,
networks, and convening power of the World Economic
Forum and its new Center for the Fourth Industrial
Revolution in San Francisco. It also brings Stanford
University’s cutting edge research departments and its deep
connections with the Silicon Valley technology community

together with the global insight and strategic analysis on
business, technology, investment and policy issues that PwC
offers. Together with other interested stakeholders, this
unique partnership is exploring how 4IR innovations could
help drive a systems transformation across the environment
and natural resource security agenda.
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Preface

The Fourth Industrial Revolution and the Earth

Industrialisation has led to many of the world’s current
environmental problems. For example, climate change,
unsafe levels of air pollution, the depletion of fishing
stocks, toxins in rivers and soils, overflowing levels of
waste on land and in the ocean, loss of biodiversity and
deforestation can all be traced to industrialisation.

As the Fourth Industrial Revolution gathers pace,
innovations are becoming faster, more efficient and
more widely accessible than before. Technology is also
becoming increasingly connected; in particular we are
seeing a merging of digital, physical and biological
realms. New technologies are enabling societal shifts
by having an effect on economics, values, identities and
possibilities for future generations.

We have a unique opportunity to harness this Fourth
Industrial Revolution, and the societal shifts it triggers,
to help address environmental issues and redesign how
we manage our shared global environment. The Fourth
Industrial Revolution could, however, also exacerbate
existing threats to environmental security or create
entirely new risks that will need to be considered

and managed.
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Harnessing these opportunities and proactively
managing these risks will require a transformation of
the “enabling environment”, namely the governance
frameworks and policy protocols, investment and
financing models, the prevailing incentives for
technology development, and the nature of societal
engagement. This transformation will not happen
automatically. It will require proactive collaboration
between policymakers, scientists, civil society,
technology champions and investors.

If we get it right, it could create a sustainability
revolution.

This “Fourth Industrial Revolution for the Earth”
series is designed to illustrate the potential of Fourth
Industrial Revolution innovations and their application
to the world’s most pressing environmental challenges.
It offers insights into the emerging opportunities and
risks, and highlights the roles various actors could play
to ensure these technologies are harnessed and scaled
effectively. It is not intended to be conclusive, but
rather to stimulate a discussion between diverse
stakeholders to provide a foundation for further
collaborative work. This paper looks at artificial
intelligence and the Earth.



Foreword

The proliferation of artificial intelligence (AI) is having a
significant impact on society, changing the way we
work, live and interact. Al today is helping the world
diagnose diseases and develop clinical pathways. It is
also being used to adapt lesson plans for students with
different learning needs. Elsewhere, Al is matching
individuals’ skill sets and aptitudes with job openings.
However, as Al acts increasingly more autonomously
and becomes broader in its use, Al safety will become
even more important. Commonly discussed risks
include bias, poor decision-making, low transparency,
job losses and malevolent use of Al (e.g. autonomous
weaponry).

Developing approaches to guide “human-friendly” Al is
arguably one of the biggest unsolved Al problems today.
As the scale of the economic and human health impacts
from our deteriorating natural environment grows, it is
becoming increasingly important to extend the rapidly
growing field of Al safety to incorporate “Earth-
friendly” Al As the technology evolves, its direct and
indirect applications for the environment will need to be
better understood in order to harness the opportunities,
while assessing the potential risks and developing
approaches for mitigating them. For example, Al could
be developed to support the creation of distributed, “off-
grid” water and energy resources; to improve climate
modelling; or to improve natural disaster resilience
planning. Ongoing cooperation among governments,
technology developers, investors and civil society will be
essential to realising this vision. As Al is the “electricity”
for the Fourth Industrial Revolution, harnessing its
potential could help to create sustainable, beneficial
outcomes for humanity and the planet we inhabit.
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As this report shows, the Al opportunity for the Earth is
significant. Today’s AI explosion will see us add Al to
more and more things every year. The Al itself will also
become smarter with each passing year — not only more
productive but developing intelligence that humans
don’t yet have, accelerating human learning and
innovation. As we think about the gains, efficiencies and
new solutions this creates for nations, business and for
everyday life, we must also think about how to maximise
gains for society and our environment.

We live in exciting times: it is now possible to tackle
some of the world’s biggest problems with emerging
technologies such as Al It’s time to put Al to work for
the planet.

Celine Herweijer
Partner, PwC UK
Innovation and Sustainability Leader

Dominic Waughray

Head of Public-Private Partnership and
Member of the Executive Committee
World Economic Forum



Our planet: The challenge

and opportunity

The challenge

There is mounting scientific consensus that Earth
systems are under unprecedented stress. The model of
human and economic development developed during
past industrial revolutions has largely come at the
expense of the planet. For 10,000 years, the Earth’s
relative stability has enabled civilisations to thrive.
However, in a short space of time, industrialisation
has put this stability at risk.

Scientists have identified nine “processes and systems
(that) regulate the stability and resilience of the Earth
System”, and say four of the nine — climate change,
loss of biosphere integrity, land-system change and
altered cycles in the globe’s chemistry — have now
crossed “boundary” levels, due to human activity.! This
elevates the risk that human activities will lead to
“deterioration of human well-being in many parts of
the world, including wealthy countries”.

The United Nations Sustainable Development Goals
provide another lens for the challenges facing
humanity. Six of the 17 goals apply directly to the
environment and humans’ influence over it:
combating climate change, using ocean and marine
resources wisely, managing forests, combating
desertification, reversing land degradation, developing
sustainable cities and providing clean affordable
energy.2

This report uses these two lenses to illuminate six
critical challenges that demand transformative action
in the 21st century:

¢ Climate change. Today’s greenhouse gas levels
may be the highest in 3 million years.3 If current
Paris Agreement pledges are kept, global average
temperatures in 2100 are still expected to be 3°C
above pre-industrial levels,4 well above the targets
to avoid the worst impacts of climate change.

¢ Biodiversity and conservation. The Earth is
losing its biodiversity at mass extinction rates. One
in five species on Earth now faces eradication, and
scientists estimate that this will rise to 50% by the
end of the century unless we take urgent action.5
Current deforestation rates in the Amazon Basin
could lead to an 8% drop in regional rainfall by
2050, triggering a shift to a “savannah state”, with
wider consequences for the Earth’s atmospheric
circulatory systems.®

¢ Healthy oceans. The chemistry of the oceans is
changing more rapidly than at any time in perhaps
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300 million years, as the water absorbs
anthropogenic greenhouse gases.” The resulting
ocean acidification and warming are leading to
unprecedented damage to fish stocks and corals.8

e Water security. By 2030, we may fall 40% short
of the amount of fresh water needed to support the
global economy? as pollution and climate change
affect the global water cycle.

¢ Clean air. Around 92% of the world’s people live
in places that fail to meet World Health
Organization (WHO) air quality guidelines.° The
WHO has reported that around 7 million people die
annually from exposure to air pollution — one death
out of every eight globally.:

¢ Weather and disaster resilience. In 2016 the
world suffered 772 geophysical, meteorological,
hydrological and climatological “natural loss
events” — triple the number in suffered in 1980.12

Taken together, these six issues pose an urgent global
challenge. As the world’s current population of around
7 billion is expected to grow to 9.8 billion by 2050, it
will increase the demand for food, materials,
transport, and energy, further increasing the risk of
environmental degradation and affecting human
health, livelihoods, and security. Can humanity
preserve the planet for future generations?

The opportunity

While these challenges are urgent and extraordinary,
they coincide with an era of unprecedented innovation
and technological change. The Fourth Industrial
Revolution offers unparalleled opportunities to
overcome these new challenges.3

This industrial revolution, unlike previous ones, is
underpinned by the established digital economy and is
based on rapid advances in artificial intelligence, the
Internet of Things (IoT), robots, autonomous vehicles,
biotechnology, nanotechnology and quantum
computing, among others. It is characterised by

the combination of these technologies, which are
increasing speed, intelligence and efficiency gains.

This report focuses on AI — the fundamental and

most pervasive emerging technology of the Fourth
Industrial Revolution. Al is a term for computer
systems that can sense their environment, think, learn,
and act, in response to what they sense, and their
programmed objectives.



Of all the Fourth Industrial Revolution technologies,
Al is expected to have the deepest impact, permeating
all industries and playing an increasing role in daily
life. By combining with other new technologies, Al is
becoming the “electricity” of the Fourth Industrial
Revolution, as innovators embed intelligence into
more devices, applications and interconnected
systems. Beyond productivity gains, Al also promises
to enable humans to develop intelligence not yet
reached, opening the door to new discoveries.

Al is already transforming traditional industries and
everyday lives. New breakthroughs powered by Al
often don’t work alone but in combination with other
Fourth Industrial Revolution technologies.’s As
entrepreneurs, businesses, investors, and
governments look to deploy and scale these
technologies to create strategic advantage, there are
also important opportunities to apply them to today’s
immediate and pressing Earth challenges, and to
generate opportunities for today and the future.
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Al for the Earth

Although AI presents transformative opportunities to
address the Earth’s environmental challenges, left
unguided, it also has the capability to accelerate the
environment’s degradation.

The focus of this report is on harnessing Al systems
today, and as they evolve, to create maximum positive
impact on urgent environmental challenges. It
suggests ways in which Al can help transform
traditional sectors and systems to address climate
change, deliver food and water security, protect
biodiversity and bolster human well-being. This
concern is tightly linked with the emerging question of
how to ensure that AI does not become harmful to
human well-being.

To develop “safe” A, the ultimate goal is to ensure
that it becomes value-aligned — the idea of a good
future aligned with humanity’s values, promising safe
application of the technology for humankind.

In practice, this means that checks and balances
developed to ensure that evolving Al systems remain
“friendly” must incorporate the health of the natural
environment as a fundamental dimension.




The Al revolution

Why now?

The first practical steps towards artificial intelligence
were taken in the 1940s. Today, Al is in use in our
daily lives and has reached a historical moment
because of six converging factors:

e Big data: Computers have given us access to vast
amounts of data, both structured (in databases and
spreadsheets) and unstructured (such as text,
audio, video and images). All of this data
documents our lives and improves humans’
understanding of the world. As trillions of sensors
are deployed in appliances, packages, clothing,
autonomous vehicles and elsewhere, “big data” will
only get bigger. Al-assisted processing of this
information allows us to use this data to discover
historical patterns, predict more efficiently, make
more effective recommendations, and more.

¢ Processing power: Accelerating technologies
such as cloud computing and graphics processing
units have made it cheaper and faster to handle
large volumes of data with complex Al-empowered
systems through parallel processing. In the future,
“deep learning” chips — a key focus of research
today — will push parallel computation further.

e A connected globe: Social media platforms have
fundamentally changed how individuals interact.
This increased connectivity has accelerated the
spread of information and encouraged the sharing
of knowledge, leading to the emergence of a
“collective intelligence”, including open-source
communities developing Al tools and sharing
applications.

¢ Open-source software and data: Open-source
software and data are accelerating the
democratisation and use of Al, as can be seen in the
popularity of open-source machine learning
standards and platforms such as TensorFlow,
Caffe2, PyTorch and Parl.ai. An open-source
approach can mean less time spent on routine
coding, industry standardisation and wider
application of emerging Al tools.

¢ Improved algorithms: Researchers have made
advances in several aspects of Al, particularly in
“deep learning”, which involves layers of neural
networks, designed in a fashion inspired by the
human brain’s approach to processing information.
Another emerging area of research is “deep
reinforcement” in which the AI agent learns with
little or no initial input data, by trial and error
optimised by a reward function.
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e Accelerating returns: Competitive pressures
have fuelled the rise of Al, as businesses have used
improved algorithms and open-source software to
boost their competitive advantage and augment
their returns through, for example, increasing
personalisation of consumer products or utilising
intelligent automation to increase their
productivity.

The convergence of these factors has helped AI move

from in vitro (in research labs) to in vivo (in everyday

lives). Established corporations and start-ups alike can
now pioneer Al advances and applications. Indeed,
many people are already using Al-infused systems,
whether they realise it or not, to navigate cities, shop
online, find entertainment recommendations, filter
out unwanted emails or share a journey to work.

Al is already here, then, and many corporate
executives perceive its potential value. In a 2017 PwC
survey of global executives, 54% reported making
substantial investments in AI, while a lack of digital
skills remains an important concern.6 As
organisations continue to invest in tools, data
optimisation, people, and Al-enabled innovations, the
realised values are expected to take off: growing from
$1.4 billion in annual revenue from Al-enabled
systems in 2016 to $59.8 billion by 2025, according to
one research study.”

AI capabilities: past, present
and future

The spectrum of Al is also expanding and
now includes:

¢ Automated intelligence systems that take
repeated, labour-intensive tasks requiring
intelligence, and automatically complete them. For
example, a robot that can learn to sort recycled
household materials.

¢ Assisted intelligence systems that review and
reveal patterns in historical data, such as
unstructured social-media posts, and help people
perform tasks more quickly and better by using the
information gleaned. For example, techniques such
as deep learning, natural language processing and
anomaly detection can uncover leading indicators
of hurricanes and other major weather events.

¢ Augmented intelligence systems that use Al to
help people understand and predict an uncertain
future. For example, Al-enabled management
simulators can help examine scenarios involving
climate policy and greenhouse gas emissions, as
pioneered by MIT’s John Sterman.:8



¢ Autonomous intelligence systems that
automate decision-making without human
intervention. For example, systems that can
identify patterns of high demand and high cost in
home heating, adapting usage automatically to save
a homeowner money.

Research on AT algorithms has been moving quickly,
especially since big data has been combined with
statistical machine-learning algorithms.

Narrow, task-driven Al techniques, already important
in many industrial applications, are now working with
big data to allow pattern recognition in unstructured
text and images. The potential of deep learning using
neural network architecture continues to grow — as
computers become faster and big data becomes ever
more prevalent — enhancing performance in fields
such as language translation and autonomous cars.

The latest advances in unsupervised deep
reinforcement learning, from DeepMind’s AlphaGo
Zero research, show that in certain situations AI can
be surprisingly powerful even without input data or
labels.?9 In situations where the boundary conditions
are known, reinforcement learning needs substantially
less time and computer processing power than older
methods. This research also developed an intelligence
that was new to humans, accelerating the natural
selection cycles of intelligence, but in machines. To
date, reinforcement learning has been primarily used
for AT gaming agents, but should also help in
corporate strategic analysis, process optimisation and
many other domains where the rules and different
states of play are well known. However, this is often
not true for many systems encountered in the real
world and a central research priority is to identify the
real-world systems where reinforcement learning
would be most useful.

Experts expect that supervised and unsupervised
learning techniques will become increasingly blended
and that such hybrid techniques will open the way for
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human-machine collaborative learning and for AI to
develop more advanced, human-like, capabilities.

Progress in AI may accelerate as new techniques are
developed to overcome existing challenges with
machine learning (deep learning in particular) and to
solve problems in the field. Two such techniques are
synthetic data creation and transfer learning
(transferring the model learnt from a task in a certain
domain and applying it to a related problem in that
domain). Both of these enable Al to “learn” more
quickly, tackling a wider range of problems
(particularly those for which there is less historical
data available).

In addition, the shift towards ‘explainable AT’, which
aims to create a suite of machine learning techniques
that produce more explainable models whilst
maintaining high performance levels, will facilitate
wider adoption of machine learning techniques and
potentially become best practice or even inform
regulatory requirements.

Ultimately, all this culminates in the quest for artificial
general intelligence (AGI), at which point, the Al
begins to master reasoning, abstraction,
communication and the formulation and
understanding of knowledge. Here the critical need for
progress in Al safety becomes fully apparent. This will
involve the development of algorithms with safety
considerations at their core.

Future advances in Al will need advanced computing
power (currently it takes around 83,000 processors
operating for 40 minutes to run the equivalent of one
second of computations performed by just 1 percent of
the human brain),2° so advances in quantum
computing, distributed computing and deep-learning
chips will be essential. In addition, further
understanding of advanced cognitive and emotional
tasks will help bring about new applications.



Figure 1: Timeline of Al developments
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The Al opportunity for our environment

The most important consideration in the development
of Al is, arguably, to ensure that it benefits humanity,
which includes being both “human-friendly” and
“Earth-friendly”.

Figure 2 highlights priorities for six of the world’s
most pressing environmental challenges and the
priority action areas for successfully addressing them:

Figure 2: Priority action areas for addressing Earth challenge areas
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In meeting these challenges, there is wide scope for
innovation and investment. Al in particular has
immense potential to help unlock solutions. Indeed,
the annex section provides a summary of research into
more than 80 existing Al use cases for the
environment that we uncovered through desk-based
research and interviews with a range of stakeholders
at the forefront of applying Al across industry, big
tech, entrepreneurs, research and government.

In the next section, we highlight, by environmental
challenge area, the broad range of emerging use cases
across relevant action areas. As can be seen from the
Figure 3, each priority Earth challenge stands to
benefit in a myriad of ways from AI. The snapshots are
not meant to be exhaustive, but to be representative of
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the most prominent innovations, and to provide an
initial overview.

Currently, most of these applications focus on
automated and assisted intelligence to unlock value
from large unstructured real-time datasets. Future
applications will likely involve more systems propelled
by autonomous decision-making where Al acts
independently, thus creating new opportunities and
risks. The challenge for innovators, investors and
governments is to identify and scale these pioneering
innovations, and also to make sustainability
considerations central to wider AI development and
use.



Figure 3: Al applications by challenge area
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AT has the potential to transform the way in which
climate change is tackled. In clean power, for example,
machine learning is being used to match energy
generation and demand in real-time, realising more
fully the potential of “smart grids”, decreasing
unpredictability, and increasing efficiency, power
balancing, use, and storage of renewable energy=2. For
example, Agder Energi2? is using AI and the Cloud to
predict and prepare for changing energy needs in
Norway, particularly given the rapidly-increasing
penetration of electric vehicles. Such approaches can
also lower the need for excess ‘idle’ capacity. Neural
networks for renewable power are also being
developed to improve the energy efficiency and
reliability. For example, DNV GL use sensors attached
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to solar and wind power generation plants to supply
data for machine learning monitoring capability,
enabling remote inspection of sites, predictive
maintenance, and energy resource forecasting2s. This
increases control and maintenance efficiency lowering
costs of solar and wind energy.

Within buildings, machine learning algorithms are
also being deployed to analyse data from millions of
smart sensors and meters to provide predictions on
energy usage requirements and cost24. Al is also being
used to provide auditory cue responsive lighting and
heating from buildings to streets to optimise energy
use, while JTC25 of Singapore is using Al to monitor,
analyse and optimise energy efficiency in buildings.
Machine learning algorithms are also being used at the



design phase to model energy efficient building layout
further optimising buildings’ efficiency in both the
production and, more important, in-use phase2¢-

For smart transport, machine learning algorithms
employing car-sourced information are already widely
used to optimise navigation (e.g., Waze and Google
Maps) and increase safety, congestion and traffic flows
(e.g., Nexar)2728-At the urban-level, these capabilities
translate to an ability to integrate public and private
modes of transport to create an efficient city mobility
service by looking for patterns in transport demand,
optimising routes and improving efficiency and
safety.29 Al guided autonomous vehicles (AVs) -
including machine vision algorithms and deep neural

Biodiversity and conservation

net techniques - will enable a transition to mobility on
demand over the coming years, and decadess°-
Connected AVs present opportunities to unlock
substantial greenhouse gas reductions for urban
transport: examples include route optimisation that
reduces driving miles and congestion, eco-driving
algorithms that prioritise energy efficiency,
programmed “platooning” of cars to traffic, and
autonomous ride-sharing services that reduce vehicles
miles travelled and car ownership3t. Key
considerations for maximising environmental impact
include generating synergies with mass transit
solutions and ensuring that AV fleets are in fact also
zero-emissions fleets.

» Precision monitoring
of ecosystems

+ Bird habitat and migration
pattern prediction

» Simulation of animal and
habitat interaction

» Habitat loss detection )
and monitoring

» Micro drones for pollination
» Optimised breeding of plants

» Register & trading of biological &
biomimetic assets

» Plant species identification

* Machine-automated land-use
detection linked to
ecosystem payments

» Detection of unauthorised
animal capture

» Image-based detection of illegal
wildlife trade

» Poacher route prediction and high
risk animal tracking

» Food value chain optimisation

* Supply-chain monitoring &
origin tracking

Biodiversity and : + Pollutant dispersal
conservation

prediction and tracking

* Analysis of urban runoff
quality issues

Invasive species

and diseases control

* Machine-automated
biodiversity analysis
* Smart mosquito traps

« Plant disease identification

& detection

Source: PwC research

Al has the potential to transform the ways by which we
monitor and conserve habitats. For example, Al
provides the backbone for applications that, combined
with satellite imagery, can automatically detect land-
use changes, including cover analysis and forests,
vegetation and monitoring of floods. For example,
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PlanetWatchers insights - using precision monitoring
of landscapes - provides a resource for management of
forest habitats to address the challenges presented by
climate change related disturbances such as pests,
damage, drought and fire.32



To monitor and control invasive species, machine
learning and computer vision are being used to
identify the presence of invasive species and diseases
in plants by tracking them and eliminating them. For
example, Blue River Technology uses computer vision
and Al to detect and identify biodiversity changes,
including the presence of invasive weeds3s.

Protection of wildlife trade is being realised by
combining AI with drone aerial footage, for example,
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Neurala is working with the Lindbergh Foundation to
track African wildlife, such as rhinos and elephants,
and spot potential poachers in order to prevent their
killing34. Objects of interest can be identified from
sensory streams, and assist humans by sifting through
terabytes of video, in real time, and identifying
animals, vehicles, and poachers, both during daytime
and nighttime.




Healthy oceans
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Al techniques are opening up various new approaches
to protect and sustainably manage oceans.35 Systems
that use Al in combination with other techniques to
gather data in hard-to-reach ocean locations support
efforts to track provenance and fish sustainably,
protect species and habitats, and to monitor the
impacts of climate change.

Al is also unlocking new solutions to tackle illegal
fishing. Machine learning techniques are being
pioneered to guide more accurate patrol schedules,
and early efforts are underway to apply vessel
algorithmic patterns to satellite data combined with
Automatic Identification System (AIS) data from ships
to monitor illegal fishing activities (e.g., Global Fishing
Watch)s36. Such tracking will enable authorities to
prevent overfishing and to control fisheries.

For species protection, some systems use image
analytics and machine learning to track the numbers
and locations of invasive species. One industry-NGO
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partnership with the Ocean Alliance uses drones to
collect mucus samples from whales off the coasts of
Patagonia, Mexico and Alaska to obtain DNA
information, and scientists use Al to gauge the
mammals’ health — and by extension, measure the
ocean habitat in which they live — in real-time3.

Ocean conditions can also be monitored using
Al-powered robots for detecting pollution levels and
tracking changes in temperature and pH of the oceans
due to climate change. Moreover, NASA uses satellite
imagery and machine learning computer modelling to
predict the current and future conditions of the
world’s oceanic phytoplankton38. Autonomous ocean
exploration technologies - utilising advances in Al,
robotics and nanotechnology - are also under
development to help survey the ocean floor at high
resolution to help with species identification and
mapping and natural resource management.39
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Water is at the nexus of food, energy, environment and
urban issues. Enabled by Al, scientists and engineers
can simulate the performance of reservoirs and project
water usage for a geographical area, in combination
with weather forecasts, making better informed policy
decisions. Valor Water Analytics, meanwhile, is
combining AI with industry intelligence and
operational interactions to manage smart meter
assets40. Their approach enables them to identify
leaks, understand water flows in real-time, and see
whether meters are malfunctioning. Elsewhere, Water
Smart Software offers a data analytics platform,
utilising machine learning, to provide utilities with
information and strategies, including the ability to
check water flows or spot anomalies4t. Moreover, Flo
Technologies uses machine learning to provide real-
time data on water quality sending alerts to user's
smartphones.
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Syracuse, N.Y. uses an Al system to analyse its aging
water infrastructure to identify specific locations of
leaks-prone pipes to repair42. While Water Planet’s
IntelliFlux incorporates Al to analyse data from
pressure sensors and determine optimal performance
of filtration systems, minimising water loss43.

As well as supply and efficiency, Al - working with
satellite data - can help forecast weather patterns and
analyse soil and surface water conditions to predict
drought conditions to help people and sectors
affected44. Scientists can also use machine learning
combined with physical models to conduct water plan
scenarios and evaluate capital investments, crisis
management plans, and potential outcomes of
water-planning decisions.
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For clean air solutions, some of the early examples
concentrated around filtration and capture. For
filtration, air purifiers (e.g. ARCADYA’s) use machine
learning to record air quality and environment data
in real-time and adapt filtration efficiency4s. Al
applications are also driving advances in real-time air
quality monitoring; for example, the company AirTick
uses smartphone cameras as a proxy for air pollution
sensors harnessing image recognition and machine
algorithms to analyse images across a city at low
cost46, Elsewhere, air pollution forecasting tools are
being developed by start-up AirVisual, IBM, and
Microsoft for cities like Beijing47. IBM’s Green
Horizons initiative combines machine learning and
10T, harnessing data from air quality stations and
more widespread sources, such as traffic systems,
weather satellites, and stations, as well as industrial
activity, topographic maps, and even social media,

to develop predictive analytics for 2 to 7-10 day
forecasts48. Both IBM’s and Microsoft’s tools blend
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traditional physics-based models of atmospheric
chemistry and weather with machine learning models.

In terms of air quality alerts, such Al-based systems
can now provide forecasts of resource intensive and
polluting behaviours. Simulations powered by AI can
enable residents of urban areas, such as Beijing, to
receive warnings about air quality.49

Moreover, the use of Al in new connected platforms
that harness data from vehicles, radar sensors, and
cameras to optimise traffic flow in urban areas is also
improving air pollution due to its impact on reducing
stationary vehicles and stop-start driving.5° In terms of
mobility, Al is also being used to optimise advanced
battery design to improve the effectiveness and
efficiency of electric vehicles, whose increased uptake
will further improve air quality.
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Many of the emerging applications for weather and
disaster resilience focus on the ability to forecast
extreme weather and natural disasters. Predictive
analytics powered by Al, along with 10T, drones,
blockchain, and advanced sensor platforms can help
governments and the scientific communities monitor
tremors, floods and windstorms, as well as sea level
changes and other possible natural hazards, in real-
time with thresholds for automated triggers, that
enable early evacuations when needed. In Indonesia,
PetaBencana.id combines multiple open-source
sensors, Al, and people’s social media reports for real-
time flood mapping in the capital, Jakarta.5! Al is also
being used with image analytics to process social
media information to provide real-time extreme
weather forecasts based on people’s images and posts,
for example, IBM building on The Weather Company
whom they acquireds2. In addition, The Yieldss is a
Tasmanian agtech company using sensors, analytics
and apps to produce real-time weather data, helping
growers make smarter decisions reducing water and
other inputs.

A number of meteorological agencies, tech companies
(e.g. IBM, Palantir), insurers, and utilities are also
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using big data analytics and Al combined with more
traditional physics-based modelling approaches to
model the impact of extreme weather events on
infrastructure and systems to inform disaster risk
management strategies. The models can be used

to predict direct damages in addition to loss
amplification due to business interruption risks
from electricity outages or transport closures. Al
simulations are also being applied to evaluate
disaster resilience strategies.

In addition to predicting extreme weather and natural
disasters, natural language processing and machine
learning techniques are increasingly being used to
communicate disaster information to the public in
response to queries. Moreover, in terms of real-time
response planning, deep-learning algorithms and
image analytics can use seismic data, structural data
for buildings (age of structure, materials used etc.),
social media data, and also satellite images to
coordinate and prioritise disaster relief efforts, from
determine which parts of a city will be most at risk to
monitoring the flow of people and resourcess4.



Al game changers for the Earth

In addition to enhancing current efforts to address
environmental issues, there is enormous potential to
create Al-enabled “game changers” in which the
application of Al, often in combination with other
Fourth Industrial Revolution technologies, has the
potential to deliver transformative solutions.

The following set of potential game changers are
defined by five key features:

1. Transformational impact (i.e. it could completely
disrupt or alter current approaches)

2. Adoption potential (i.e. the potential population
size is significant)

3. Centrality of Al to the solution (i.e. Al is a key cog
in the solution)

4. Systems impact (i.e. the game changer could really
shift the dial across human systems)

5. Realisable enabling environment, including
political and social dynamics (i.e. the enabling
environment can be identified and supported)

Some such possible game changers are listed
individually below. But often, cross-sectoral
combinations of these game changes offer the greatest
potential to transform fundamentally human systems.
Autonomous electric vehicles, for example, could work
in combination with distributed-energy grids, so that
the charging stations, and thus the vehicles, are fed by
a decentralised and optimised renewable-energy grid
and ultimately become sources in this grid themselves.

Emerging AI game changers

( 1. Autonomous and connected
e electric vehicles

AT will be vital in the widespread transition to
autonomous connected electric vehicles (EVs), which
will ultimately transform short-haul mobility while
reducing greenhouse gas emissions and delivering
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cleaner air. Machine-learning-enabled autonomous
electric vehicles will improve the efficiency of
transport networks as connected vehicles
communicate with one another and with transport
infrastructure to identify hazards while optimising
navigation and network efficiency. EV charging will
become more affordable via demand-response
software programs enabled by big data (such as Auto
Grid). Clean, smart, connected and increasingly
autonomous and shared short-haul transport will
combine Al with other Fourth Industrial Revolution
technologies, notably the Internet of Things, drones
and advanced materials (in battery breakthroughs,
for example).

Increased demand for transport could offset some
efficiency gains, but overall a smart transport system
enabled by Al can be expected to lower emissions.
Improved efficiency may also encourage car sharing
and reduce car ownership, further reducing emissions
from manufacturing and operating vehicles.

Still, the transition to connected autonomous fleets in
cities will be gradual and will vary from country to
country. It may be decades before fully autonomous
urban fleets are the norm. In addition to developing
the technology, challenges related to public
acceptance, legal and insurance liability questions, and
the provision of charging infrastructure will need to be
addressed. Further, the vehicle replacement cycle
takes approximately 15— 20 years.

While full “Level 5” vehicle autonomy (with no human
intervention at all) may still be decades away, "Level
4” AVs (highly automated, but with driver takeover
when needed) may be tested on roads as early as 2021.
At this level, cars can drive in cities and provide
mobility-on-demand services. More substantial
emission-reduction benefits also begin to appear.

@ 2. Distributed energy grids

> In the energy grid, the application of
machine learning, including deep learning,
is increasingly widespread in the energy industry. For
the environment, the use of Al to make distributed
energy possible at scale is critical for decarbonising
the power grid, expanding the use of (and market for)
renewables and increasing energy efficiency. Al can
enhance the predictability of demand and supply for
renewables, improve energy storage and load
management, assist in the integration and reliability of
renewables and enable dynamic pricing and trading,
creating market incentives. Al-capable “virtual power
plants” (VPPs) can integrate, aggregate, and optimise
the use of solar panels, microgrids, energy storage
installations and other facilities. Distributed energy



grids may also be extended to incorporate new sources
such as solar spray or paint-coated infrastructure of
vehicles, and to allow AI-enabled “solar roads” to
expand, connect and optimise the grid further. In solar
roads, for example, Al could allow a road to learn to
heat up to melt snow, or to adjust traffic lanes based
on vehicle flow.

Smart grids will also use other Fourth Industrial
Revolution technologies, including the Internet of
Things, blockchain (for peer-to-peer energy trading)
and advanced materials (to increase the number of
distributed sources and optimise energy storage).

All of this will require sufficient regulation to assure
the security and integrity of the software, ownership
and control of intellectual property rights (which may
help unlock investment and innovation), management
of, and responsibility for, operational elements that
are powered by machine learning, and regulatory
frameworks for transferring and trading energy, often
virtually. As economies and settlements move away
from “heavy infrastructure” towards “smart”
infrastructure with a low environmental footprint, the
decentralised nature of distributed energy grids mean
they have the potential to be used globally.

Smart agriculture

3

i Precision agriculture (including precision
nutrition) is expected to involve increasingly
automated data collection and decision-making at the
farm level — for example to plant, spray and harvest
crops optimally, to allow early detection of crop
diseases and issues, to provide timed nutrition to
livestock, and generally to optimise agricultural inputs
and returns. This promises to increase the resource
efficiency of the agriculture industry, lowering the use
of water, fertilizers and pesticides, which are creating
runoff that currently finds its way into rivers, oceans
and insect populations, causing damage to important
ecosystems.

Here the key Fourth Industrial Revolution
technologies that will combine with AI include robot
labour (such as Blue River techss5 and core intelligence
chatbots), drones, synthetic biology (in crop genome
analysis, for example) and advanced materials.
Machine and deep learning will also work in tandem
with the Internet of Things and with drones. Sensors
measuring conditions such as crop moisture,
temperature and soil composition will give Al the data
needed to automatically optimise production and
trigger important actions such as adding moisture.56
Drones are increasingly being used to monitor
conditions and communicate with sensors and
Al-enabled systems.57
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Regulation of data ownership, pricing algorithms for
commodity goods and cross-border data flows will
need to keep pace with these fast-growing
technological advances. “Smart agriculture” has the
potential to change fundamentally agriculture even
more than 20th-century mass-farming methods did.
And these changes may spread more rapidly than
previous ones.

4. Weather forecasting and
climate modelling

A new field of “Climate Informatics” is
already blossoming, harnessing Al to transform
fundamentally weather forecasting (including
prediction of extreme events) and to improve
understanding of the effects of climate change.58 This
is promising because the weather and climate-science
community already has large amounts of data and
continues to collect more, providing a fine test bed for
machine and deep learning applications. Until now,
use of these frequently updated datasets has
demanded substantial high-performance computing
power and limited the accessibility and usability for
the scientific and decision-making communities. Al
can solve these challenges, increasing both the
performance of weather and climate modelling, and
making it more accessible and usable for decision-
making.

Public agencies including the UK Met Office and
NASA, and private-sector actors such as IBM and
Microsoft, are using Al and machine learning to
enhance the performance and efficiency of weather
and climate models.59 These models process
complicated physical equations — including fluid
dynamics for the atmosphere and oceans — and
heuristics for elements that can’t be fully resolved (for
example, aspects of atmospheric chemistry such as ice
particles turning to water). The complexity of the
governing equations requires expensive, energy-
intensive computing, but deep-learning networks can
emulate some aspects of these climate simulations,
allowing computers to run much faster and
incorporate more complexity of the ‘real-world’ system
into the calculations. Al techniques may also help
correct biases in models, extracting the most relevant
data to avoid data degradation and otherwise improve
computational efficiency. In all of these cases, Al, with
human oversight, “supervises” to improve simulations.
Over time, cheaper, faster weather and climate models
unlocked through AI could reduce the need for energy-
hungry supercomputers, lower the cost of research
and open the field of weather and climate science to
many more researchers.

Wider AI applications include simpler machine-
learning techniques, combining weather models and



ancillary impacts data, to help predict the effects of
small-scale extreme weather events (such as
windstorms and floods) on human systems, allowing
better risk management. More broadly, however, the
application of nascent deep reinforcement learning
techniques is unchartered territory for climate and
weather science. Investigation will be needed to
identify the real-world physical systems in which these
new tools will be most useful.

We are already seeing how better weather and climate
data helps decision-makers, from the public and
private sectors, to improve climate resilience. The UK
Met Office, for example, has developed a chatbot
application to demonstrate how “frictionless” data or
queries can be extracted from complex big datasets,
using sophisticated Al in real time and communicating
to the user through a simple interface. Another
example involves artificial assistants, fed by forecasts
data, that can help make everyday decisions, from
what to wear to when to travel.

Some companies are already working together, and
with universities and government agencies, within the
field of climate informatics. There is now an
opportunity to formalise, organise and promote the
emerging scientific discipline of Al for weather and
climate science, including international coordination
(for example, through the World Meteorological
Organisation and the Intergovernmental Panel on
Climate Change), dedicated national R&D funding and
cross-industry collaboration.

5. A community disaster-
response data and analytics
platform

The speed and effectiveness with which organisations
and people can respond to disasters has a substantial
impact on the extent of economic losses and human
suffering, particularly in the most catastrophic events.
But delays often occur due to a lack of information,
analytical insight and awareness of the best course of
action. Often the necessary data exists in large part,
but is segregated among various organisations and is
thus mostly inaccessible to communities.

Better resiliency planning is also an important
component to mitigate the damage of future natural
catastrophes. Al can be used to sort through
multidimensional data about a region and identify
which aspects have the biggest impact on resilience. Al
can run and analyse simulations of different weather
events and disasters in a region to seek out
vulnerabilities and identify the resiliency plans that
are most robust across a range of event types.

New hybrid systems of rules and tools can use data
and AT techniques to build a “Community Distributed
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Data Escrow” system that could enhance disaster
preparation and response through coordination of
emergency information capabilities.b© When a disaster
strikes, predefined uses of data would be activated to
equip first responders with better tools for
understanding the local context and take precise
action. For example, machine learning combined with
natural language processing algorithms could identify
the best station points and routes for distribution and
evacuation, the amount of relief required and optimal
relief-effort timetables. Here AI would work in
combination with other Fourth Industrial Revolution
technologies including drones and the Internet of
Things. Deep reinforcement learning may one day be
integrated into disaster simulations to determine
optimal response strategies, similar to the way Al is
currently being used to identify the best move in
games like AlphaGo.

Harnessing Al to provide better disaster response and
planning will require public-private partnerships. A
community of technical, legal and accounting experts,
for example, would need to specify key datasets and
standardise approaches, define methodologies for
leveraging APIs and ML tools to access vital data
securely and accountably, and establish the terms and
conditions for stakeholders to operate within

the system.

6. Decentralised water

Machine and deep learning could enable a

step-change in the optimisation of water-
resource management. Increasingly, AT has the
potential to create distributed “off-grid” water
resources, analogous to decentralised energy systems.

Household smart meters can produce large volumes of
data that can be sued to predict water flows, spot
inconsistencies and check leaks. The next stage will be
to combine machine learning, the Internet of Things
and blockchain to create a truly decentralised water
system, where local resources and closed-loop water
recycling gain value. Water resources could even be
traded via blockchain.

Furthermore, machine learning, predictive modelling
and robotics can be combined to transform current
approaches to building and managing water
infrastructure and to accelerate innovation in
environmental engineering. Rivers, for example, could
be engineered to adjust autonomously their own
sediment flows. Coupled with Al-informed pricing,
such approaches could optimise water usage and drive
behaviour change by providing incentives for water
conservation.



@ 7. Al-designed intelligent,
connected and livable cities

Beyond autonomous vehicles, deep learning
also promises better urban planning, leading to
resilient, human-centric cities with minimal air
pollution and environmental impact. Al could also be
used to simulate and automate the generation of
zoning laws, building ordinances and floodplains.
Combined with AR and VR, Al-generated data could
be used by city planners and infrastructure investors,
along with officials responsible for ensuring disaster
preparedness and, when needed, reconstruction.

Al, smart meters and the Internet of Things can also
help forecast and optimise urban energy generation
and demand - both city-wide and at the level of
individual homes and buildings. Real-time AI-
optimised energy efficiency can have an immediate
and substantial impact on energy consumption
(Google, for example, cut power use in its data centres
by 40% by using DeepMind’s reinforcement learning
algorithms to optimise cooling.t*) AI-enabled smart
grids will also be critical for fast-growing emerging
cities, and are in fact already being piloted, from Brazil
to the Philippines.

Combining real-time city-wide data on energy and
water consumption and availability, traffic flows,
people flows, and weather could create an “urban
dashboard”. With the addition of AI this could
optimise water and energy use across the city,
potentially reducing the need for costly additional
infrastructure while reducing pollution and congestion
— thereby reducing the city’s environmental footprint
and increasing its liveability.

8. Oceans data platform

Real-time monitoring with AI can improve
decision-making in fields ranging from
species management and protection to natural
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resource management to climate resilience. One early
example is the Ocean Data Alliance,®2 which has
started to work together to develop and implement
open-source solutions to provide the data needed for
comprehensive monitoring of ocean resources, from
satellites to data from ocean exploration technologies.
Developed fully, this approach could allow decision-
makers to use machine learning to monitor, predict
and respond to changing conditions such as illegal
fishing, a disease outbreak or a coral-bleaching event.

New processing capabilities could provide close-to-
real-time transparency by enabling authorities, and
even the general public, to monitor fishing, shipping,
ocean mining and other activities. Vessel algorithmic
patterns could identify illegal fishing, biological
sensors could monitor the health of coral reefs and
ocean current patterns could improve

weather forecasting.

One of the main challenges to realising such a
platform is the processing power required: ocean
modelling is second only to astrophysics in its hunger
for computing power. But as the cost of data storage
and processing declines, new possibilities to model
human activities and how they impact our oceans will
become available. To prevent the emergence of
multiple competing platforms which could reduce
effectiveness and increase the overall costs of
collecting, managing, and using ocean data, an open-
access platform could be created that enables data
from different sources to continually be uploaded in a
standardised format. Public-private partnerships may
be needed to ensure trust, governance and accuracy.

%? 9. Earth bank of codes

Bio-inspired innovations (such as blood-

pressure medication derived from viper
venom) aim to replicate nature’s products and
processes. Historically, the revenues from such
activities have not been shared with the indigenous
and traditional communities from which the
knowledge originates. For the first time in history, the
fair sharing of benefits and a significant new stream of
conservation finance is now possible using a
combination of blockchain, artificial intelligence,
advanced sensors and the Internet of Things.

The Amazon Third Way initiative®s is developing the
Earth Bank of Codes (EBC), a project to create an
open, global public-good digital platform that registers
nature's assets, recording their spatial and temporal
provenance and codifying the associated rights and
obligations. (This helps to implement the Nagoya
Protocol of the Convention on Biological Diversity.) A
fusion of AI and complex systems analytics will be
vital to bundling the biological, biomimetic and
traditional-knowledge assets from a biodiversity



hotspot to maximise economic and conservation value
simultaneously. In addition, an Al-driven “biological
search engine” will allow users to understand more
fully the planet’s web of life, which could optimise
scientific discovery, catalyse a myriad of bio-inspired
innovations and improve conservation outcomes by
creating new sources of economic value. Al techniques
will include natural language processing, deep
learning, computer vision, probabilistic

programming and an array of statistical
machine-learning techniques.

This project is building a coalition of willing
stakeholders to co-design and co-implement the EBC
in the Amazon Basin (called the Amazonian Bank of
Codes®4) before replicating and scaling in other biomes
on land and in the oceans.

Further-off AI game changers

By the 2030s, further advances in Al and other Fourth
Industrial Revolution technologies may bring us more
innovations for the environment. These could include:

1. A real-time digital dashboard of
the Earth

A real-time, open API digital geospatial dashboard for
the planet would enable the monitoring, modelling
and management of environmental systems at a scale
and speed never before possible — from tackling illegal
deforestation, water extraction, fishing and poaching
to air pollution, natural disaster response and smart
agriculture. We have the Al methods to do this, but we
need more information, more frequently received and
at greater resolution than at present. The challenge is
to build something truly transformational, easy to use
in real-time, open-access and data-dense (meaning
that the information is high-resolution, scalable and
aggregates environmental and human exposure data).
This will require collaboration among entrepreneurs,
industry, government and the non-profit sector.

Public and private systems that can help amass the
necessary data include the European Space Agency’s
Copernicus,% NASA’s Earth Observing System and the
private companies Planet, Digital Globe and Orbital
Insights. These organisations can provide
comprehensive Earth observation from space.
However, this data would need to be aggregated and
retrieved in context, which requires tools to extract
and label the relevant information. AI can help tackle
this challenge as we build a dashboard with usable
data, including both environmental- and hazard-data
layers, along with exposure layers. The implications
for natural-resource management (including
investment, policy-making and dispute settlement)
could be profound.
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At least two steps are already being taken in this
direction. The US National Science Foundation’s
EarthCube initiative uses machine learning and
simulation modelling to create a 3D living model of
the entire planet. And the US company Planet has put
over 180 micro-satellites into orbit, to image the whole
planet’s landmass daily, at a resolution of 3—5
metres.% Platforms like this one could bring a
breakthrough: Planet plans to incorporate computer
vision developments and machine learning to make an
index of the planet, tracked over time. Crucially, it is
developing practical ways to extract data and is
collaborating with NGOs and governments to develop
public-good analytics for Earth-systems management.

2. Autonomous farming and end-to-
end optimised food system:

Al could enable farms to become almost fully
autonomous. Farmers may be able to grow different
crops symbiotically, using Al to spot or predict
problems and to take appropriate corrective actions
via robotics. For example, should a corn crop be seen
to need a booster dose of nitrogen, an Al-enabled
system could deliver the nutrients. Al-augmented
farms could also automatically adjust crop quantities,
based on supply and demand data. This kind of
production could be more resilient to Earth cycles.

Our understanding of human dietary needs is likely to
improve in the coming decades, as we learn how
individuals process their food intake, based on data
from many individual bodies. Applying machine
learning to this data could generate personalised
nutrition plans optimised for individuals. When
combined with autonomous farming, autonomous
delivery vehicles, in-house robotic chefs and in- house
vertical farming, entire food supply chains could be
optimised and transformed, creating minimum-waste
supply chains while providing high yields. The same
principles could also be applied to livestock.

3. Reinforcement learning for
Natural Sciences breakthroughs:

Deep reinforcement learning could evolve to enable its
application to real-world problems, including to solve
problems addressed by Earth scientists. This could
enable scientific progress and discovery in scientific
areas where the boundary conditions of a system are
known but input data is lacking, and/or the
complexity of a system is such that it requires access to
currently infeasible computing architecture.

Technically, step one is to understand what the
optimal “real world” natural and human-natural
systems are, in which we can most fully define the
boundary conditions, to enable the application of
reinforcement learning. A hybrid approach that



combines supervised and unsupervised learning will
likely be most successful, given the challenges of fully
defining the boundary conditions of real world
problems. Understanding which real world systems
can be codified and optimising for reinforcement
learning will require collaboration between Al
pioneers and domain experts including climate
scientists, materials scientists, biologists, and
engineers. For example, DeepMind co-founder, Demis
Hassabis, has suggested that, in the materials science
space, a descendant of AlphaGo Zero could be used to
search for a room temperature superconductor — a
hypothetical substance that allows electrical current to
flow with zero lost energy, further allowing for
incredibly efficient power systems. As was done with
Go, the algorithm would start by combining different
inputs (in this case, the atomic composition of various
materials and their associated qualities) until it
discovers something the humans had missed.

4. Quantum and distributed
computing to dramatically scale

computational power for Al for
the Earth:

Instead of using brute force to increase the computing
power of Al, innovators are increasingly exploring
other advances such as deep learning chips,
harnessing the move to cloud, and the ability to use
distributed computing and quantum computing. All of
these advances that increase computing processing
power will enable large scale optimisation of big data
analytics and Al, scaling and transforming their
application and impact for environmental challenges.
But advances in quantum computing, in parallel, could
offer fundamentally new opportunities for scientific
discovery. Classical computers cannot compute things
the way nature does (which operates in quantum
mechanics); they are limited to the human made
binary code (of zeros and ones) rather than the natural
reality of continuous variables. In other words, with
classical computers we are currently modelling the
Earth system in a way that it does not actually
function. Quantum computers open the door to
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solving the quantum problems as they exist in nature
and discovering ways in which the Earth system really
works: from key applications in quantum chemistry, to
quantum physics and mechanics. This could lead to
the discovery of new advanced materials, new
biological processes (e.g. energy transference, cellular
growth, or ecosystem dynamics), and progress in the
modelling of planetary physics.

5. The home supercomputer and
Al research assistants for
democratised scientific progress:

Earth science is currently one of the most
computational heavy fields of scientific discovery —
with supercomputing systems in widespread use
across the field and climate researches using some of
the largest and most powerful systems available
today. The cost of building, accessing and running
supercomputers inhibits access to researchers and
limits the pace at which new modelling and research
can be undertaken. Over the coming decade or two,
computational power and advances in Al algorithms
will likely reach a point in which the average home
computer will have as much power as today’s
supercomputers.

In parallel, machine learning more broadly will also
unlock faster and cheaper Earth system and climate
models, and AI will begin to replace many of the
labour-intensive and time-consuming tasks that
scientists now do (e.g., trawling through data archives,
converting files) — acting in effect as an ‘Al research
assistant’. The result is that the pool of scientists and
practitioners that have access to computing power
and Al tools could increase vastly, progress in

Earth science and its application could become
democratised, and scientific productivity could be
substantially boosted with a subsequent acceleration
in discoveries. Again these could include
breakthroughs in understanding of weather risk,
future regional and local climate impacts, and more
challenging areas including climate feedback loops
and tipping points.
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Al unguided: unintended consequences

for the Earth

For all the enormous potential AI offers for building a sustainable planet for future generations, it also poses short-
and long-term risks. These can be divided, broadly speaking, into six categories with varying impacts on individuals,

organisations, society, and the Earth.

Figure 5: Indirect impacts of Al by category
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Performance risks

For the most part, the outputs of Al systems are
determined within a “black box” and with little
transparency, these outputs may not be trusted. By
their nature, Al algorithms (which are self-learning
and continuously adapting) are difficult to explain and

in many cases may not be explainable to humans at all.

An inability to understand the rationale behind Al
outputs also makes it difficult to ascertain whether the
performance or outputs of Al algorithms are accurate
or desirable. Significant risks are therefore
conceivable. The emerging field of explainable Al
(XAI) research aims to create new Al methods that are
accountable to human reasoning. But this field is still
in its early days. Meanwhile, ongoing research aims to
reduce “model bias” resulting from biases in training
data, and to increase the stability of model
performance. As Al solutions are deployed, one
unintended consequence is the over-reliance on Al
algorithms with variable performance. It is essential
that humans stay “in the loop” on auditing algorithm
outputs to mitigate these unintended biases and wider
performance risks.

Example: Early-warning systems for natural
disasters such as flooding are trained using historical
data on weather patterns. However, if there is a lack
of understanding of factors driving model predictions
due to poor explainability, there is a significant risk
of false alarms or false negatives, particularly in
situations that are not represented in the data used to
train the AI model.57

Security risks

Misuse of Al via hacking is a serious risk, as many
algorithms being developed with good intentions (for
example, for autonomous vehicles) could be
repurposed for harm (for example, for autonomous
weaponry). This raises new risks for global safety.
Good governance is required to build explainability,
transparency and validity into the algorithms,
including drawing lines between beneficial and
harmful AI. Machine-learning (especially deep-
learning) models can also be duped by malicious
inputs known as “adversarial attacks”. For example, it
is possible to find input data combinations that can
trigger perverse outputs from machine-learning
models, in effect hacking them.

Example: Hackers could access automated warning
systems, distributed energy grids or connected
autonomous transport platforms, and cause regional
disruptions. Appropriate governance will be required
to ensure human and Earth-friendly AI and prevent
misuse. Misuse of AI could also occur when systems
fall into the wrong hands. For example, poachers
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could profit from Al-enabled endangered-animal
tracking tools meant for conservation efforts.

Control risks

Al systems work autonomously and interact with

one another, creating machine-centred feedback
mechanisms that can cause unexpected outcomes. For
example, chatbots interacting with one another have
created their own language that humans cannot
understand. In 2010 a financial crash was caused by
the interactions of multiple AI bots speed-trading,
which created artificial market inflation. Proactive
control, monitoring and safeguards are necessary to
catch these issues before they become a problem.

Example: Smart-energy optimisation across
buildings and infrastructure will create interactions
between energy-use decisions within each building
and at the regional level. Each building would
operate individually, assessing overall demand
patterns to determine low-cost energy-use
approaches. Depending on circumstances, individual
building decisions will interact with regional ones,
potentially altering demand in ways that could crash
regional energy systems.

Economic risks

As companies adopt Al it may alter the competitive
landscape, creating winners and losers. Those able to
improve their decision-making most quickly through
Al may find the benefits accelerate very quickly, while
slower adopters may be left behind. Companies that
struggle in the AI transition may be forced to reduce
investment, possibly impairing their sustainability
performance. Tax-base erosion presents another
economic threat as the current system, based on
“bricks-and-mortar” and nation-states, struggles to
keep pace with the globalised digital economy. Tax
erosion could be a drag on public spending, including
investment in, for example, programmes designed to
reduce greenhouse gas emissions. Current tax systems
may need re-evaluation as automation changes
workplaces, potentially reducing the number of jobs
available.

Example: Increased productivity from automation,
plus rising consumption from improved
personalisation, product design and Al-informed
marketing, could increase resource use, waste and
demand for energy.

Social risks

Large-scale automation threatens to reduce
employment in transportation, manufacturing,
agriculture and the service sector, among others.
Higher unemployment rates could lead to greater
inequality in society. In addition, algorithms designed



by a subset of the population at a national and global
level have the potential for unconscious bias, possibly
leading to results that marginalise minorities or other
groups. Autonomous weapons also pose a significant
threat to society, possibly permitting bigger, faster
conflicts. Once unleashed, this might lead to rapid
and significant environmental damage, even to a
“doomsday” scenario where weaponised Al presents
an existential risk to humanity.68

Example: Autonomous trucks and cars, along with
energy-efficient Internet of Things manufacturing,
offer considerable environmental benefits but could
also lead to a considerable loss of employment.
(Goldman Sachs estimates that the US alone will lose
an estimated 300,000 jobs per year when AV
saturation peaks®). Regional economic decline and
widening social inequality and unrest could also

follow in manufacturing towns or along truck routes.
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Ethical risks

The ethical and responsible use of Al involves three
main elements: the use of big data; the growing
reliance on algorithms to perform tasks, shape choices
and make decisions; and the gradual reduction of
human involvement in many processes. Together,
these raise issues related to fairness, responsibility,
equality and respect for human rights.”o Additionally,
while biased AI outcomes can raise significant privacy
concerns, many insights and decisions about
individuals are based on inferred group or community
attributes. Accordingly, consideration of the harm Al
could do must be framed beyond the individual level
and recognise that privacy is not the only issue.

Example: Autonomous emergency food- and
disaster-relief delivery systems that are trained using
reinforcement learning or historical demand patterns
will route supplies to specific regions during natural
disasters. This could create ethical dilemmas relating
to accountability for delivery dysfunctions, priority-
setting and results.



Conclusions and recommendations

Conclusions

Al systems, and their ability to control machines
automatically and remotely, have caught the public’s
imagination. The opportunity for Al to be harnessed to
benefit humankind and its environment is substantial.
The intelligence and productivity gains that Al will
deliver can unlock new solutions to society’s most
pressing environmental challenges: climate change,
biodiversity, ocean health, water management, air
pollution, and resilience, among others.

However, Al technology also has the potential to
amplify and exacerbate many of the risks we face
today. To be sure that Al is developed and governed
wisely, government and industry leaders must ensure
the safety, explainability, transparency and validity of
AT applications. It is incumbent on authorities, Al
researchers, technology pioneers and Al adopters in
industry alike to encourage deployments that earn
trust and avoid abuse of the social contract.

Achieving this requires a collaborative effort to ensure
that as Al progresses, its idea of a good future is
aligned to human values and encapsulates a future
that is safe for humanity in all respects — its people
and their planet.

Recommendations

Leveraging Al technologies, not only for business and
short-term growth prospects, but also for sustainable
and resilient growth, requires decisive action. Public-
private dialogue and partnerships will be crucial to
develop solutions, assure good governance and
overcome financial barriers.

This section lists some recommendations, categorised
by stakeholder groups, to speed up innovation,
minimise environmental risks and maximise
environmental benefits from the application of Al
Three overarching areas, however, are particularly
pertinent to all stakeholders:

¢ Delivering “responsible AI”: to ensure that
sustainability principles are embedded alongside
wider considerations of Al safety, ethics, value and
governance. This applies to decisions by private
and public sector actors about investment in,
design of, and operation of Al systems. It also
incorporates efforts to advance and implement Al
accountability, along with the development of
governance frameworks, particularly in relation to
data and algorithms. Definitions and standards
relating to the “misuse of AI” will also be needed
that incorporate misuse for environmental as well
as human harm. The Partnership on Al is a positive
step in this direction.”
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e Collaborating for interdisciplinary
solutions: there will be a for need significantly
more interaction among technologists, policy-
makers, domain specialists and even philosophers
to optimise the design and deployment of Al
applications for the Earth, both at a broad systems
level and in relation to individual applications. In
conjunction, academic and research institutions
will need to develop interdisciplinary educational
and research programmes to reflect this
multifaceted and multidisciplinary approach.

¢ Directing finance for innovation: realising the
goal of “Earth-friendly” AT will require significant
funding to support scaling and commercialisation
of new solutions. This includes large-scale basic
and applied R&D investment that bridges the
technology and environmental disciplines, impact
capital directed at technology solutions, specialised
venture and growth capital, and government
financial instruments that catalyse private sector
innovation, for example through innovation
accelerators, price support mechanisms and
targeted patient capital.

Priority actions for each stakeholder group include the
following;:

For companies

¢ Companies from all sectors: Firms should
establish board-level Al advisory units to ensure
that companies’ boards understand Al, including
safety, ethics, values and governance
considerations. Companies should also ensure that
their technology strategies build in and optimise
the effect AI will have on sustainability outcomes,
both to capture new business opportunities and to
manage risks.

¢ Technology pioneer companies: Both start-
ups and established technology firms developing Al
need to embed environmental considerations into
design principles. Technology pioneers also have an
opportunity to innovate in realising the potential of
Al for the environment. Microsoft’s new “Al for
Earth” programme,”2 an example of co-innovation,
includes grants to entrepreneurs tackling Earth
challenges to help them access Al technology, Al
training for universities and non-governmental
organisations working on climate, water,
agriculture and biodiversity and partnerships and
investments to commercialise promising new
solutions.”3



e Leadership on “responsible AI”: Responsible
companies, in alliance with governments, could
assume a leadership role in embedding
sustainability principles alongside wider Al safety,
ethics, values and governance considerations.

¢ Al accountability: Data access will be essential to
building many of the Al applications that deliver
environmental benefit. However robust, well-
governed data security, use, consent and processing
are critical to building societal trust and
confidence. Data (and in some circumstances
algorithms) will in many cases have to be audit-
able, particularly in collaborations with public-
sector institutions. Industry cooperation will also
be important to advance Al accountability.

¢ Industry collaboration on Al standard-
setting: to develop industry-wide and industry-
regulator teamwork to aid in AI standard-setting
(for example, through consensus protocols and
smart contracts that include efficiency principles,
or which require common agreement and
governance).

¢ Interdisciplinary solutions. Many emerging Al
solutions could have enormous impacts on the
ways we live and work, but industry-led solutions
may be designed and developed by a small group of
people with a limited perspective. Increasingly,
there will need to be diversity in Al development
and use, including significantly more interaction
among technology practitioners, domain and
sectoral experts and philosophers, lawyers,
psychologists and others, in order to develop,
deploy and champion holistic AT mechanisms and
solutions.

For governments

Given the potential for disruptive social and
environmental consequences, it will be essential to
develop sophisticated national and international
governance structures for the new Al-enabled digital
economy. These governance mechanisms —
collaborating with industry and civil society — can help
ensure that AT advances support inclusive growth that
is aligned with the UN’s Sustainable Development
Goals. Within these frameworks, the following policy
considerations should be advanced:

¢ R&D investment: Coordinated and targeted
large-scale funding commitments could encourage
research and funding collaboration on “Al for
good”, connecting industrial, academic and
government research agencies. Research priorities
will need to encourage interdisciplinary research —
bridging technology, social, and environmental
disciplines will be essential. This could include
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funding new specialist programmes and
international research collaborations — for
example, on the application of AI to weather
prediction and climate modelling under the
governance of the World Meteorological
Organization and national meteorological and
climate agencies.

¢ Responsible technology policy: The
development of ‘responsible technology’ policies
could set clear parameters for technology
innovators and ensure alignment with human
values and international frameworks such as the
Sustainable Development Goals. Stakeholders
could develop a definition and standard regarding
the misuse of AI, while ensuring that social and
environmental considerations are incorporated
into national digital strategies.

e Better data, trusted data: Creation of better
data environments, including for data access and
data skills, could maximise the use of machine
learning for sustainable solutions. Efforts could
focus on improving the systems and protocols by
which data is defined, gathered, accessed and
manipulated. This includes government initiatives
for open public data, industry-government
collaboration on data and code verification or
audits and policy frameworks (or agreements) to
make strategic data available to specific users —
with specified safeguards — in order to enable AI
applications for societal and environmental
benefits.

e Algorithm assurance and transparency:
Governments have a role in regulating the use of
“black box” AI models for high-risk, high-impact
environmental domains such as autonomous
vehicles. Regulations could be accompanied by a
process for evaluating the robustness of algorithms
(“algorithmic assurance”) on an ongoing basis.

e Algorithmic bias: Policy frameworks will need to
support technology companies, other industry and
researchers to manage potential systemic bias in
algorithms and ensure a social safety net for Al
Crowd-sourced raw data that tech companies use in
their algorithms typically reflect the biases and
prejudices inherent in society at large. Policy
frameworks are needed to balance concerns about
unfairness and discrimination in publicly sourced
big data with the technical and ethical challenges of
monitoring and the potential censorship of data.

¢ Innovative finance mechanisms and
partnerships: there is a need to align both
incentives and risks for private-sector innovation
and scaling of AI applications for the environment,
including support for early-stage



commercialisation. This could include government-
backed innovation incubators, accelerators, funds
and prizes; price-support mechanisms; and
targeted patient and/or concessional capital to
enable scaling of technological solutions for the
public (including environmental) good.

For tnvestors

¢ Sustainable portfolios: Angel investors, venture

capitalists, accelerators and impact investors
should build and support a portfolio of Fourth
Industrial Revolution technology companies that
address sustainability challenges within their
remits. This approach could enable the impact
investment community to complement traditional
development projects with efforts that could speed
up the transformational impact — and the
commercial opportunity — of investments in
technologies of the Fourth Industrial Revolution.

Investment criteria: Mainstream institutional
investors and asset managers should embed
sustainability considerations into investment
portfolios on Al (and other Fourth Industrial
Revolution) technologies.
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For research institutions

Bias & XAl research: Further research is needed
to identify algorithmic bias and to find ways to
improve the explainability of Al, specifically for
environmental applications and how they could
support government and company efforts to
harness Al for the Earth. As each domain has
nuances of how data or algorithmic bias influence
the system, there needs to be further evaluation of
the risks associated with environmental impact.

Interdisciplinary programmes: Research
institutions should help lead the interdisciplinary
approach by further developing and disseminating
educational programmes that bring together
environmental and technology/data scientists and
practitioners, while highlighting the use, impact
and risks of Al for the environment.

Educational partnerships: To ensure
vocational-school and university graduates are
ready to enter the job market with practical tools
that integrate digital and sustainability.
Partnerships between academia, governments and
the private sector could support the integration of
environmental, societal and governance themes
into AI and data and computer science degrees, and
vice versa.
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Annex I:

Glossary of Al terms
Al glossary

Al consists of a number of areas, including but not limited to those below:

Main Al areas

Large-scale machine
learning

Deep learning

Reinforcement learning

Natural language
processing (NLP)

Collaborative systems

Computer vision
(image analytics)

Algorithmic game
theory and
computational social
choice

Soft robotics (robotic
process automation)

Description

Design of learning algorithms, as well as scaling existing
algorithms, to work with extremely large datasets.

Model composed of inputs such as image or audio and

several hidden layers of sub-models that serve as input

for the next layer and ultimately have an output or

activation function.

An area of machine learning that teaches computers to identify
optimal behaviour in different environments through a
cumulative reward function.

Algorithms that process human language input and convert it
into understandable representations.

Models and algorithms to help develop autonomous systems
that can work collaboratively with other systems and with
humans.

The process of pulling relevant information from an image or
sets of images for advanced classification and analysis.

Systems that address the economic and social computing
dimensions of Al, such as how systems can handle potentially
misaligned incentives, including self-interested human
participants or firms and the automated Al-based agents
representing them.

Automation of repetitive tasks and common processes such
as IT, customer servicing and sales without the need to
transform existing IT system maps.

30 | Harnessing Artificial Intelligence for the Earth



Annex II:

In this Annex, we detail a broad range of over 80 use case applications of Al for the Earth - across the same challenge
and action areas. The use cases were uncovered during the course of our research, which included both desk-based
research and interviews with a range of stakeholders at the forefront of applying AI across industry, big tech, start-

ups, research and government.

Action area Al use Description of the role of Al Potential environmental outcomes
application
Clean power Optimised energy =~ Machine learning and deep More efficient production, better use

system forecasting

learning analysis of electricity
consumption patterns to make
intelligent, real-time decisions in
order to maximise the efficiency
of energy use (multiple case
studies).

of resources, and lower
environmental impacts.

Smart meter
enabled smart
grids

Machine learning algorithms to
analyse the data from millions
of smart meters to provide
predictive analytics solutions for
smart grids (e.g. Grid4C).

Suppliers understand the peak usage
time and the downtime at the granular
level and use this data to optimise
overall electricity supply.

Data-driven smart
grids

Al to better analyse data
gathered across electrical grids,
enabling utilities to predict and
meet the constantly changing
energy needs and demands
(e.g. Agder Energi utilising
Microsoft’s cloud).

A more effective, reliable and
autonomous electrical grid, while
encouraging customers to consume
more renewable energy.

Solar and wind
energy plant
assessment

Sensors attached to solar and
wind power generation plants to
supply data for machine
learning monitoring capability,
enabling remote inspection of
sites, predictive maintenance,
and energy resource
forecasting (e.g. DNV GL).

Increase efficiency of control and
maintenance tasks, in turn lowering
costs of solar and wind energy.

Solar flare
prediction

The use of machine learning
algorithms to forecast solar
flares, e.g. using Solar
Dynamics Observatory’s vast
data sets.

Predicting when solar flares will
happen could reduce disruption to
both power grids and satellites.
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Action area Al use Description of the role of Al Potential environmental outcomes
application

Smart cities Energy efficient Machine learning to simulate Support planning of building layouts

and homes building design energy consumption during to enable optimised energy

building design phase to guide
energy efficiency in building
design and operations (e.g. the
Energy-Plus model).

consumption.

Energy efficiency

of buildings in use

Al-enabled intelligent
ecosystems that integrate
different systems together,
allowing to remotely monitor,
analyse and optimise building
systems (multiple case studies,
including JTC).

Enhances energy-efficiency across
systems and buildings.

Smatrt traffic flow
management

Smart transport
systems

Street lights with Al algorithms
that uses data from radar
sensors and cameras to detect
traffic and build a street light
timing plan that maximises
efficiency of traffic flow (e.g.
Surtrac) or informs optimal
traffic navigation (e.g. Nexar).

Al-controlled traffic lights and real
time vehicle navigation systems to
ease congestion and reduce air
pollution.

On-demand
response to
transport mobility

Al can be used to analyse data
(e.g., weather and user
behaviour) to generate insights
that inform the management of
transport networks across a
city, enabling a more efficient
mobility service.

Increased efficiency and utilisation of
transportation. Ultimately enables a
connected autonomous fleet with
energy consumption benefits.

Al enabled
autonomous
vehicles

Al - including machine vision
algorithms and deep neural net
techniques - is critical to
enabling the deployment of, and
vehicle mix transition to
Autonomous vehicles (AVs).
Multiple use cases of
application by Tech Firms, start-
ups and Automotive companies.

Connected AVs present opportunities
to energy usage reductions including
route optimisation, eco-driving
algorithms that prioritise energy
efficiency, programmed “platooning”
of cars to traffic, and autonomous
ride-sharing services that reduce
vehicles miles travelled and car
ownership.

Al enabled
electric cars

Electric car drive time data
(weather conditions, traffic
volumes, tyre wear and driver
behaviour) and machine
learning to predict journey
energy requirements with
increased accuracy (e.g. Spark
EV Technology software).

Journey prediction information can
be used to increase the efficiency of
energy-use between vehicle charges,
and increases vehicle range.
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Action area Al use Description of the role of Al Potential environmental outcomes
application

Sustainable Reduced losses in  Machine learning to better Assists businesses and consumers in

land-use the supply chain forecast the amount of food managing and monitoring supply

grocery stores and consumers
need each day and minimise
waste (multiple case studies).

chains to reduce loss and waste.

Early crop yield Remote sensing and ground Helps set appropriate food reserve
prediction data is used in deep learning levels, identifies low-yield regions -
models to predict crop yield with  avoiding wasted resources - and
high spatial resolution (county- improves risk management of crops.
level) several months before
harvest (multiple case studies).
Precision Drones are automated using Better crop management and
agriculture machine learning techniques resource use through flexible

and have sensors to provide 24
hour monitoring of field
conditions (plant health, soil
condition, temperature and
humidity), allowing farmers and
field staff to immediately
address any crop anomalies
that the sensor may have
recorded.

rationality. Taking action to address
a specific goal related to that
environment.

Data-driven

The application of Al enables

Data-driven solutions that assist farm

farming seamless data collection from productivity.

various sensors, cameras and

drones, in an attempt to put

data in the hands of farmers for

them to improve crop yields

(multiple case studies, incl.

Microsoft FarmBeats

collaboration).
Global crop Satellite and weather Provides high-resolution and high-
production data coupled with machine accuracy forecasts to inform crop and
monitoring learning techniques to model supply management and improve

complex systems, such as crop yields.

forestry and agriculture (e.g.

Descartes Labs).
Hyper-local Satellite imagery, soil data Provides insights to enable
weather and hyper-local weather maximisation of crop yield and
forecasting data to generate hyper-local minimisation of resource use,

weather forecast information
for farmers to provide insight
on when to plant, fertilize,
spray, irrigate, and harvest
crops (e.g. HydroBio).

for instance, through informing
irrigation requirements to minimise
water wastage.

Early detection of
crop issues

Al for early detection of crop
issues to improve crop yield
and revenue for farmers (e.g.
DeepFarm).

Early identification of crop yields
contributes to more sustainable
farming.
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Action area Al use Description of the role of Al Potential environmental outcomes

application
Sustainable Supply chain Natural language processing Monitors suppliers and informs supply
production and  monitoring and tools to analyse and interpret chain management conditions to
consumption transparency environmental, social and improve efficiency and reduce

governance data about global deforestation an.
supply chains. For example,

water consumption, energy

efficiency, workplace conditions

(e.g. eRevalue).

Monitoring health Facial recognition to track and Reduce inefficiencies in food

in livestock follow individual cows in large production and improves
farming herds, turning visual information  sustainability in supply chains.
into actionable data (e.qg.
Cainthus).
Smart recycling Recycling stations using neural ~ Smart bins enable identification of a
systems network to gather real-time wide range of food and beverage
feeds to select and sort the right cartons so as to separate non-
items from the belt. recyclable, from recyclable, products.
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Action area Al use Description of the role of Al Potential environmental outcomes
application

Habitat Habitat loss Spatial modelling uses an Inform land-use decisions and

protection and detection and artificial neural network prioritise conservation efforts.

restoration monitoring architecture to track changes in

forest cover over time, and
produce a map with areas at
high risk for forest loss.

Precision land-use
mapping

Geographic Information System
(GIS) and machine learning
models to generate accurate
land-use models, and simulate
the impact of different land-use
activities, and planting options
(e.g. Microsoft and ESRI
collaboration with Chesapeake
Conservancy).

Land-use mapping under different
planting scenarios enables optimised
conservation to protect and restore
local habitats.

Bird habitat and
migration pattern
prediction

Crowd sourced bird observation
reports and remote sensing
data, which uses machine
learning to predict where there
will be changes in habitat for
certain species and the paths
along which birds will move
during migration is collected
(e.g. the eBird model).

Pattern predictions can help decision
makers to decide how best to protect
the habitats of birds.

Simulation of
animal and habitat

Use of machine learning
techniques to simulate animal

Simulations of interactions can help
people understand what form of

interaction behaviour in response to a animal activity leads to the most
variety of variable conditions. resource deficits.

Precision Satellite sensors, advanced Precision monitoring provides a

monitoring of machine learning algorithms, resource for management of forest

forest habitats and cloud computing to monitor  habitats to address the challenges

natural forest habitats, and
predict the impact of weather
and environmental changes
(e.g. The PlanetWatchers
program).

presented by climate change related
disturbances such as pests, damage,
drought and fire, to improve the
overall productivity of the forest.

Invasive species
and disease
control

Plant disease
identification and

Al-driven systems that uses
image analytics based analysis

Supports optimal treatment and
watering of crops, which helps reduce

detection of crowd sourced image datato  unnecessary product and water use.

understand the identification,

prevention, and treatment

requirements of crops (e.g.

Plantix).
Machine Computer vision and Al to Enables significant savings in the
automated detect, identify, and make volume of pesticides being sprayed
biodiversity management decisions about when tackling weeds, whilst
analysis the biodiversity of a habitat. optimising fertiliser use for crops.

For example, the presence of
invasive weeds (e.g. Blue River
Technology).
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Action area Al use Description of the role of Al Potential environmental outcomes
application
Smart Mosquito Machine learning systems that Detects infectious diseases in the
traps can differentiate between the environment before they cause
mosquitoes that they want to potentially deadly outbreaks of
trap/not trap, building a more viruses or other dangerous diseases.
efficient and effective trap
(e.g. Microsoft).
Pollution Pollutant dispersal  Al-enabled modelling is used to  Reduction in the level of reactive
control prediction and more accurately predict the nitrogen reaching natural
tracking dispersion of pollutants under ecosystems, reducing threats to plant
complex environmental diversity.
conditions.
Analysis of urban Models of various highly Neural networks can monitor urban
runoff quality variable physical phenomena in  stormwater pollution levels and
issues the water, accurately predicting  enable the development of better
the level of biochemical oxygen  water resources management.
demand (BOD), ammonia-
nitrogen, nitrate-nitrogen, and
ortho-phosphate-phosphorus.
Realising Optimised Use of machine learning to Identifies genetic sequences that
natural capital breeding of plants  leverage insights about how relate to qualities to help crops more

crops have performed in various
climates, to predict which genes
will most likely generate
beneficial traits in plants.

efficiently use water, nutrients, adapt
to climate change, or resist disease.

Monitoring species

Open resource databases
where pattern recognition from
photograph records is used for
tracking individual animals. For
example, for whale shark
monitoring (e.g. Wildbook).

Automated species recognition and
monitoring with increased accuracy
informs conservation efforts.

Biodiversity
mapping

Open resource that uses
crowdsourced biodiversity data
and machine learning capability
for accurate identification and
tracking of species (e.g.
iNaturalist).

Classification of new species and
monitoring numbers and location of
endangered species, informing
conservation efforts.

Plant species

Use of deep learning to identify

Digitise the records of past and

identification plant species that have been present biodiversity to provide a
pressed, dried and mounted on  valuable resource for future
herbarium sheets in order to conservation work.
support digitisation of natural-
history museum collections.

Machine- Urban areas can be detected in  Provide information on how land-use

automated land- satellite imagery using various is changing, helping governments to

use detection

machine-learning approaches
(e.g., supervised, unsupervised,
and semi-supervised) which
turn high-resolution imagery into
land cover maps.

make informed decisions about when,
where, and how to most effectively
deploy conservation efforts.
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Action area Al use Description of the role of Al Potential environmental outcomes

application
Sustainable Smarter fresh-food Machine learning allows Addresses the common—and
trade replenishment retailers to automate formerly costly—problem of having too much
manual processes and or too little fresh food in stock,
dramatically improve the diminishing wasted food.
accuracy of customer
purchasing and ordering
forecasts.
Detection of Machine learning and pattern Parks are better able to protect their
unauthorised recognition to detect the capture animals and to tackle the global trade
animal capture of animals from sensor camera in unauthorised animals.
images (e.g. Protection
Assistant for Wildlife Security
(PAWS)).
Image-based Apps which use image and Supports elimination of the illegal
detection of illegal  pattern recognition software, to  wildlife trade and enables effective
wildlife trade allow users to visually verify monitoring of the legal wildlife trade.
taxonomic derivatives at various
taxonomic levels.
Poacher route Machine learning to track and Information used to counteract and
prediction and predict the paths of both at-risk  respond to illegal poaching activities
high risk animal animals and the poachers who (e.g. in Africa).
tracking are hunting them (e.g. Neurala).
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Action area Al use Description of the role of Al Potential environmental outcomes
application

Fishing Detection of Software devices use machine Monitors legal and illegal catches to

sustainably unlawful fishing learning to inform scientists and  support sustainable fishing.

practices regulators on what creatures
are caught to provide them with
a full picture of legal harvests
and detect unlawful operations.
Overfishing Algorithms embedded into fully Reduces the number of protected

prevention and
control

automated software that
workers use in fishing
operations to identify fish and
classify them by species.

animals such as sharks and turtles
that are accidentally caught along
with tuna.

Automated fish
catch thresholds

Video footage from fishery
operations is used for
preliminary fish recognition
using artificial neural networks,
alongside counting and shape
recognition, to arrive at an
accurate estimate of how many
fish can be caught.

Enables a more accurate estimation
of numbers of fish and a better
understanding of marine ecosystems
informs fishing threshold decisions.

Monitoring illegal
fishing activities

Automatic Identification System
(AIS) data from ships combined
with other datasets and
machine learning to monitor
illegal fishing activities (e.g.
Google Fishing Watch)'.

Predicts commercial fishing behaviour
in near real-time and helps to reveal
ships where AlS transponders may
be turned off, supporting law
enforcement of protected marine
areas.

Impacts from
climate change
(incl.
acidification)

Real-time
monitoring of
ocean pollution,

Al-powered robots used for
detecting pollution levels and
tracking changes in temperature

Provides accurate data on ocean
pollution and pH which is used for
developing biodiversity conservation

temperature and pH of the oceans. action plans.

and pH

Phytoplankton Machine learning to understand  Valuable information for researchers
distribution the distribution of phytoplankton  attempting to understand the effect of
detection and in the oceans. And satellite changes in atmospheric CO2 on our
prediction imagery and computer modeling  planet.

to predict the current and future
conditions of the world’s
oceanic phytoplankton (e.g.
NASA).

1 Clark, Liat, Google’s Global Fishing Watch is using ‘manipulated’ data, Wired, November 2014, available at:
http://www.wired.co.uk/article/global-fishing-watch-false-data-windward
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Action area Al use Description of the role of Al Potential environmental outcomes
application
Preventing Marine litter Al techniques to define general Fast and reliable estimations of litter
pollution prediction litter categories that occur on categories inform research studies
beaches, and assess litter and management priorities of
pollution occurrence (e.g. beaches.
researchers in Turkey).
Robotic fish to Al-enabled robotic fish Enables early identification of
fight pollution technology that detect pollutants in water, which enables
potentially hazardous pollutants  management activities to be
in the water, for instance from a  undertaken before the pollutant level
leaking underwater pipe (e.qg. increases.
European Commission-funded
research).
Drones to analyse Al and drone capabilities to Informs marine conservation efforts.
whale health analyse data that drones collect
via the blow, or snot, exhaled
from whales when they surface
to breathe (e.g. Intel are
collaborating with Parley for
the Oceans on its SnotBot
initiative)?.
Protecting Coral reef Autonomous drones are Al- Monitoring the reef on an ongoing
habitats mapping enabled to use machine basis provides a valuable resource for
learning to map the coral reef conservation activities.
and automatically sift through
data to track changes in the reef
formation.
Monitoring marine  Drones are being developed to Drones are used to economically
habitats for take detailed imagery of marine  restore degraded ecosystems, for
change habitats and use machine example, by planting mangroves.
learning algorithms to process
data and determine the best
location for planting as to
ascertain which species are
best fit for the area.
Protecting Predicting the A system that uses image Track levels of invasive species in
species spread of invasive  analytics and machine learning  order to inform control activities.
species to track the numbers and

locations of invasive species.

Prevention of
illegal wildlife
trafficking

Machine learning tools to
processes data from the "dark
web" to penetrate organised
crime for protected marine
wildlife (e.g. DeepDive).

Tools to prevent illegal trafficking of
wildlife.

2 Gilbert, Elissa, Scientists equipped “SnotBots” — drones using sophisticated AI programs — to learn about whales, oceans and even human
health, August 2017, available at: https://iq.intel.com/whale-snot-hold-secret-ocean-

health/?cid=sem43700027467499372&intel _term=parley+for+the+oceans&gclid=EAIalIQobChMIhO6LzPqW2AIVAtVkCh1ikMgRSEAAYAIAAEg
Lsp_D_BwE&gclsre=aw.ds&dclid=CKuCpfP6ltgCFVIFgQodTewB-g

39 | Harnessing Artificial Intelligence for the Earth



Action area Al use Description of the role of Al Potential environmental outcomes
application
Adequate Drones for real- Algorithms that use monitoring Monitors the health of a body of water
sanitation time river quality data from drones to automate resourcefully, and provides
monitoring the delivery of water quality recommendations for waterways
reports (e.g. The University of management.
Toronto).
Adequate Artificial Neural Network models  Monitors the quality of drinking water
sanitation of water have been developed and in urban areas.
reserves validated for predicting the pH
at different locations of the
distribution system of drinking
water.
Real-time User-friendly cloud-based Limit wastewater while also ensuring
monitoring and system for real time monitoring high quality water supply.
management of and management of household
household water water supply. For example, Flo
supply Technologies creates intelligent
water monitoring and control
system for single family homes.
Harmful algal Machine learning techniques to ~ Reduce volume of harmful algal
blooms detection train a smart device (cellular blooms which have severe impacts
and monitoring phone or tablet) to detect the on human health and aquatic
presence of cyanobacteria in a ecosystems.
small surface portion of a
freshwater.
Catchment Stream-flow Machine learning techniques for  Short-term (real-time) forecasting
control forecasting modelling non-linear (e.g., hourly and daily) enables
hydrological conditions, in order  reliable operation of flood and
to generate short and long term  mitigation systems. Long-term
streamflow forecasts and forecasting (e.g., weekly, monthly and
automate catchment annual), is important in the operation
management infrastructure. and planning of reservoirs,
hydropower generation, sediment
transport, and irrigation management
decisions.
Drought Accurate drought Machine learning enables Drought planning over a lead-time of
planning planning accurate drought forecast by 3 to 6 months, which can be crucial

means of multiple drought-
related attributes from
precipitation, satellite-derived
land cover vegetation indices,
and surface discharge (multiple
case studies).

for agricultural planning, reservoir
management, and authorities’
allocation of water resources.

Water efficiency

Residential water
use monitoring

Machine learning algorithms to
detect inaccuracies or
anomalies in water meter data
(e.g. Valor Water Analytics).

Monitors water flow in real-time to
maximise efficiency of water use by
customers.

Underground
leaks detection

Detection of underground leaks
in potable water supply systems
through analysis of satellite
imagery and machine learning
(e.g. Utilis).

Enables more leaks to be detected
and a reduction in water loss.
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Action area

Al use
application

Description of the role of Al

Potential environmental outcomes

Industrial water
use optimisation

Machine learning algorithm to
analyse disparate water data to
develop optimal management
and control protocols for the
water management by utilities
and industrial users (e.g. Pluto
Al).

Automated identification of optimal
water management to ensure
efficiency of water use and
associated energy conservation.

Predictive
maintenance of
water plants

Machine learning to quickly and
effectively analyse hundreds of
variables that have an impact

on a pipe’s likelihood of failure.

Estimates current pipe corrosion and
deterioration to ensure high water
quality standards.

Early-warning for
water
infrastructure
maintenance

Machine learning models that
assign risk scores to individual
water mains on a map.

Analysis to help city planners
prioritise mains for maintenance and
replacement.

Self-adaptive
water filtration

Machine-learning to analyse
data from flow and pressure
sensors continuously to
determine optimal performance
of filtration systems in
environments where water
quality varies. For example, the
oil and gas sectors (e.g. Water
Planet’s IntelliFlux software).

Filter enables effective and high
quality water filtration where influent
water quality is variable, thereby
minimising water loss.

Water quality
simulation

Numerical models used to
simulate flow and water quality
processes in coastal
environments, with the
emphasis traditionally being
placed on algorithmic
procedures to solve specific
problems. Al has made it
possible to integrate
technologies into numerical
modelling systems in order to
bridge the gaps (multiple case
studies).

Optimise water management
decision-making.

Water asset
maintenance

Systems to integrate computer
modelling with local authority
planning, policy interventions
and decision making, using
dynamic feedback from the
field, to modify models and
decision making (e.g. Pluto Al).

Lengthens the lives of water assets,
reducing leaks, and lowering water
expenditure and loss.
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Action area Al use Description of the role of Al Potential environmental outcomes
application
Clean fuels Pollution Al leverages pollutant (e.g., Pollution forecasting used for
forecasting for carbon dioxide, and nitrogen management response to minimise
transport oxides) and environmental data  pollution impacts (e.g., congestion
management (humidity, solar irradiation, and charge, traffic restrictions).
temperature) to predict transport
pollution intensity in urban areas
(e.g. multiple case studies).
Advanced battery  Advanced Al-enabled material Improve battery-electric and fuel-cell
and fuel-cell modelling to improve battery- car technology in order to reduce the
design electric and fuel-cell cars (e.g. cost of technology and enable

Toyota).

transition to electric vehicle fleets.

Early-warning

Pollution level
forecasting

Predicting air pollution levels by
combining data from several
different models. For example,
Microsoft currently provide
China’s Ministry of
Environmental Protection a
forecast for Beijing for the
following 12 hours, achieving 60
percent accuracy.

Manage urban air quality to protect
the health of the public.

Filtering and
capture

Sensor-based air
purifying systems

Air quality sensors built into
tablet devices. Using machine
learning to analyse air quality
while considering individual
preferences, to adapt filtration
efficiency (e.g. ARCADYA'’S air
purifying system).

Provides clean air at a personalised
level to meet individual's needs.

Monitoring and
prevention

Real-time air

Machine learning tool to

Accurate real-time estimates of the air

pollution estimate air pollution levels from quality in individual’'s neighbourhoods

monitoring photographic evidence (e.g. to adapt behaviour accordingly.
AirTick).

Air pollutant Smart indoor air quality monitors  Provide real-time information of

source detection

using neural network algorithms
to associate a pollutant with a
source in a given environment.

pollutant sources enabling individuals
to manage scenarios.
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Action area Al use Description of the role of Al Potential environmental outcomes
application
Early-warning High impact Machine learning tools to Improves early prediction accuracy of
systems weather event improve the prediction skill for high-impact weather events, to
prediction multiple types of high-impact facilitate effective preparation.
weather, including
thunderstorms and tornadoes
(e.g. The US NOAA, UK Met
Office).
Social media Machine learning models Assists during natural disasters,
enabled disaster  integrating disaster crisis data prioritising the efforts of first
response from social media (e.g., tweets)  responders.
to provide information that
relates to particular crises, to
inform disaster response
activities (e.g. Qatar Computing
Research Institute (QCRI)).
Real-time natural  The use of the latest web Processes and analyses social media
disaster technologies, cloud computing,  feeds in real-time for improving flood
communication natural language processing, monitoring and prediction, supporting
and machine intelligence flood preparedness, recovery and
techniques to communicate response.
disaster information to the
public in real time (e.g. IBM and
Weather Company).
Financial Rapid, multi- Machine learning algorithms to Inform smart climate and extreme
instruments source risk scan web content to generate weather policy and investment

analysis

high-frequency, objective, and
actionable risk scores, including
social, geopolitical and climate
risk (e.g. GeoQuant).

decisions.

Smart investment
decisions

Machine learning to filter and
process resources from across
the web (news, academic
journals, press releases) to
provide sustainable investment
advice to clients (e.g.
NewsConsole).

Supports evaluation of capital
investment decisions under different
scenarios (e.g., climate change).

Prediction and
forecasting

Extreme weather

Al combined with more

Prediction and risk quantification to

risk prediction traditional physics-based aid disaster preparedness decision-
and modelling approaches to model  making for communities, businesses
preparedness the impact of extreme weather and governments.

events on infrastructure,

including Al downscaling

techniques (multiple use cases

involving Met Offices, utilities,

and tech firms),
Weather- Integrated public source data, Enables airlines to adjust their routes
forecast-informed and data from airplane sensors, to reduce fuel use and improve on
flight paths to make predictions about flight safety.

weather conditions along flight
paths (e.g. Panasonic).
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application
Real-time Machine learning solutions that  Helps growers to make smarter
weather use sensors and data analytics  decisions that can reduce their water
predictions to produce real-time weather use and other inputs, while also
data (e.g. The Yield, UK increasing yield.
Met Office).
Resilience Emergency risk Natural language processing Users can receive answers to their
planning and communication and machine intelligence tools questions on flooding (e.g., flood
disaster to communicate disaster conditions, forecast, flood risk) in
response information to the public (e.g. order to mitigate risk of natural
IFIS Knowledge Engine). disasters.
Earth systems'’ Machine learning to create 3-D Support scientists to avoid
response living models of the entire catastrophic events or plan for
prediction planet. The vast amounts of unavoidable events (e.g., flooding)
data will enable the modelling of before they occur.
different conditions and predict
how Earth's systems will
respond (e.g. National Science
Foundation and EarthCube,
Planet Labs).
Real-time flood Tools that combine data from Provides accurate and up to date
mapping open source sensors and social  flood information for governments and
media reports to use machine local residents, for flood planning and
learning for real-time flood response.
mapping (e.g. PetaBencana.id
in Jakarta).
Resilient Automated Computing and machine Constructs and manage natural
Infrastructure mitigation of learning to automatically control  landscapes that benefit biodiversity or
flood risk the flow of water through flood mitigate the risk of natural disasters

gates in response to changing
conditions.

(e.g., flooding).

Building-specific
earthquake
damage
prediction

Al-enabled modelling using
seismic data and structural data
from buildings (age, materials,
etc.) to prioritise which parts of a
city will be most at risk from
earthquakes.

Helps inform earthquake response
management in order to mitigate
impacts.
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Annex III:

The Fourth Industrial Revolution for
the Earth initiative

The Fourth Industrial Revolution for the Earth
initiative is designed to raise awareness and accelerate
progress across this agenda for the benefit of society.
In the first phase of the project, specific environmental
focus areas will be considered in depth, exploring in
detail how to harness Fourth Industrial Revolution
innovations to better manage the world’s most
pressing environmental challenges. Initial focus areas
will include:

e Air pollution

¢ Biodiversity

o C(ities

¢ (Climate change and greenhouse gas monitoring
¢ Food systems

e QOceans

e Water resources and sanitation.

Working from these thematic areas, the World
Economic Forum, supported by Stanford University
and PwC (as project adviser) and advised by the
members of the Global Future Councils on the Future
of Environment and Natural Resource Security and
specific Fourth Industrial Revolution technology
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clusters, will seek to leverage their various networks
and platforms to:

¢ Develop a set of insight papers, taking a deep
dive into the possibilities of the Fourth Industrial
Revolution and each of these issues.

¢ Build new networks of practitioners and
support them to co-design and innovate for action
on the environment in each of these issue areas,
leveraging the latest technologies and research that
the Fourth Industrial Revolution offers

¢ Design a public-private accelerator for
action, enabling both government, foundational,
research organisation, and commercial funds to be
pooled and deployed into scaling innovative Fourth
Industrial Revolution solutions for the
environment.

e Help government stakeholders to develop and
trial the requisite policy protocols that will
help Fourth Industrial Revolution solutions for the
environment to take hold and develop.

The Fourth Industrial Revolution for the Earth
initiative will be driven jointly out of the World
Economic Forum Center for the Fourth Industrial
Revolution in San Francisco and other Forum offices
in New York, Geneva and Beijing.
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